亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we propose a novel framework that aims to jointly design the reflection coefficients of multiple reconfigurable intelligent surfaces (RISs) and the precoding strategy of a single base station (BS) to optimize the tracking of the position and the velocity of a single multi-antenna user equipment (UE). Differently from the literature, and to keep the overall complexity affordable, we assume that RIS optimization is performed less frequently than localization and precoding adaptation. The optimal RIS and precoder strategy is compared with the classical beam focusing strategy and that which maximizes the communication rate. It is shown that if the RISs are optimized for communication, the solution is suboptimal when used for tracking purposes. Numerical results show that it is possible to achieve the 6G positioning requirements in a typical indoor environment with only one BS and a few RISs operating at millimeter waves.

相關內容

Intelligent reflecting surface (IRS) is an emerging technology for wireless communication composed of a large number of low-cost passive devices with reconfigurable parameters, which can reflect signals with a certain phase shift and is capable of building programmable communication environment. In this paper, to avoid the high hardware cost and energy consumption in spatial modulation (SM), an IRS-aided hybrid secure SM (SSM) system with a hybrid precoder is proposed. To improve the security performance, we formulate an optimization problem to maximize the secrecy rate (SR) by jointly optimizing the beamforming at IRS and hybrid precoding at the transmitter. Considering that the SR has no closed form expression, an approximate SR (ASR) expression is derived as the objective function. To improve the SR performance, three IRS beamforming methods, called IRS alternating direction method of multipliers (IRS-ADMM), IRS block coordinate ascend (IRS-BCA) and IRS semi-definite relaxation (IRS-SDR), are proposed. As for the hybrid precoding design, approximated secrecy rate-successive convex approximation (ASR-SCA) method and cut-off rate-gradient ascend (COR-GA) method are proposed. Simulation results demonstrate that the proposed IRS-SDR and IRS-ADMM beamformers harvest substantial SR performance gains over IRS-BCA. Particularly, the proposed IRS-ADMM and IRS-BCA are of low-complexity at the expense of a little performance loss compared with IRS-SDR. For hybrid precoding, the proposed ASR-SCA performs better than COR-GA in the high transmit power region.

Movable antenna (MA) is a promising technology to improve wireless communication performance by varying the antenna position in a given finite area at the transceivers to create more favorable channel conditions. In this paper, we investigate the MA-enhanced multiple-access channel (MAC) for the uplink transmission from multiple users each equipped with a single MA to a base station (BS) with a fixed-position antenna (FPA) array. A field-response based channel model is used to characterize the multi-path channel between the antenna array of the BS and each user's MA with a flexible position. To evaluate the MAC performance gain provided by MAs, we formulate an optimization problem for minimizing the total transmit power of users, subject to a minimum-achievable-rate requirement for each user, where the positions of MAs and the transmit powers of users, as well as the receive combining matrix at the BS are jointly optimized. To solve this non-convex optimization problem involving intricately coupled variables, we develop two algorithms based on zero-forcing (ZF) and minimum mean square error (MMSE) combining methods, respectively. Specifically, for each algorithm, the combining matrix of the BS and the total transmit power of users are expressed as a function of the MAs' position vectors, which are then optimized by using the gradient descent method in an iterative manner. It is shown that the proposed ZF-based and MMSE-based algorithms can converge to high-quality suboptimal solutions with low computational complexities. Simulation results demonstrate that the proposed solutions for MA-enhanced multiple access systems can significantly decrease the total transmit power of users as compared to conventional FPA systems under both perfect and imperfect field-response information.

In this paper, we investigate the uplink performance of cell-free (CF) extremely large-scale multiple-input-multipleoutput (XL-MIMO) systems, which is a promising technique for future wireless communications. More specifically, we consider the practical scenario with multiple base stations (BSs) and multiple user equipments (UEs). To this end, we derive exact achievable spectral efficiency (SE) expressions for any combining scheme. It is worth noting that we derive the closed-form SE expressions for the CF XL-MIMO with maximum ratio (MR) combining. Numerical results show that the SE performance of the CF XL-MIMO can be hugely improved compared with the small-cell XL-MIMO. It is interesting that a smaller antenna spacing leads to a higher correlation level among patch antennas. Finally, we prove that increasing the number of UE antennas may decrease the SE performance with MR combining.

Millimeter-wave (mmWave) and terahertz (THz) communication systems adopt large antenna arrays to ensure adequate receive signal power. However, adjusting the narrow beams of these antenna arrays typically incurs high beam training overhead that scales with the number of antennas. Recently proposed vision-aided beam prediction solutions, which utilize \textit{raw RGB images} captured at the basestation to predict the optimal beams, have shown initial promising results. However, they still have a considerable computational complexity, limiting their adoption in the real world. To address these challenges, this paper focuses on developing and comparing various approaches that extract lightweight semantic information from the visual data. The results show that the proposed solutions can significantly decrease the computational requirements while achieving similar beam prediction accuracy compared to the previously proposed vision-aided solutions.

We consider the problem of multi-agent navigation and collision avoidance when observations are limited to the local neighborhood of each agent. We propose InforMARL, a novel architecture for multi-agent reinforcement learning (MARL) which uses local information intelligently to compute paths for all the agents in a decentralized manner. Specifically, InforMARL aggregates information about the local neighborhood of agents for both the actor and the critic using a graph neural network and can be used in conjunction with any standard MARL algorithm. We show that (1) in training, InforMARL has better sample efficiency and performance than baseline approaches, despite using less information, and (2) in testing, it scales well to environments with arbitrary numbers of agents and obstacles. We illustrate these results using four task environments, including one with predetermined goals for each agent, and one in which the agents collectively try to cover all goals.

In this paper, we investigate network-assisted full-duplex (NAFD) cell-free millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems with digital-to-analog converter (DAC) quantization and fronthaul compression. We propose to maximize the weighted uplink and downlink sum rate by jointly optimizing the power allocation of both the transmitting remote antenna units (T-RAUs) and uplink users and the variances of the downlink and uplink fronthaul compression noises. To deal with this challenging problem, we further apply a successive convex approximation (SCA) method to handle the non-convex bidirectional limited-capacity fronthaul constraints. The simulation results verify the convergence of the proposed SCA-based algorithm and analyze the impact of fronthaul capacity and DAC quantization on the spectral efficiency of the NAFD cell-free mmWave massive MIMO systems. Moreover, some insightful conclusions are obtained through the comparisons of spectral efficiency, which shows that NAFD achieves better performance gains than co-time co-frequency full-duplex cloud radio access network (CCFD C-RAN) in the cases of practical limited-resolution DACs. Specifically, their performance gaps with 8-bit DAC quantization are larger than that with 1-bit DAC quantization, which attains a 5.5-fold improvement.

This paper studies the exploitation of triple polarization (TP) for multi-user (MU) holographic multiple-input multiple-output surface (HMIMOS) wireless communication systems, aiming at capacity boosting without enlarging the antenna array size. We specifically consider that both the transmitter and receiver are equipped with an HMIMOS comprising compact sub-wavelength TP patch antennas. To characterize TP MUHMIMOS systems, a TP near-field channel model is proposed using the dyadic Green's function, whose characteristics are leveraged to design a user-cluster-based precoding scheme for mitigating the cross-polarization and inter-user interference contributions. A theoretical correlation analysis for HMIMOS with infinitely small patch antennas is also presented. According to the proposed scheme, the users are assigned to one of the three polarizations, which is easy to implement, at the cost, however, of reducing the system's diversity. Our numerical results showcase that the cross-polarization channel components have a nonnegligible impact on the system performance, which is efficiently eliminated with the proposed MU precoding scheme.

We consider the problem of optimal unsignalized intersection management for continual streams of randomly arriving robots. This problem involves solving many instances of a mixed integer program, for which the computation time using a naive optimization algorithm scales exponentially with the number of robots and lanes. Hence, such an approach is not suitable for real-time implementation. In this paper, we propose a solution framework that combines learning and sequential optimization. In particular, we propose an algorithm for learning a policy that given the traffic state information, determines the crossing order of the robots. Then, we optimize the trajectories of the robots sequentially according to that crossing order. The proposed algorithm learns a shared policy that can be deployed in a distributed manner. We validate the performance of this approach using extensive simulations. Our approach, on average, significantly outperforms the heuristics from the literature and gives near-optimal solutions. We also show through simulations that the computation time for our approach scales linearly with the number of robots.

In recent years, recommender systems have advanced rapidly, where embedding learning for users and items plays a critical role. A standard method learns a unique embedding vector for each user and item. However, such a method has two important limitations in real-world applications: 1) it is hard to learn embeddings that generalize well for users and items with rare interactions on their own; and 2) it may incur unbearably high memory costs when the number of users and items scales up. Existing approaches either can only address one of the limitations or have flawed overall performances. In this paper, we propose Clustered Embedding Learning (CEL) as an integrated solution to these two problems. CEL is a plug-and-play embedding learning framework that can be combined with any differentiable feature interaction model. It is capable of achieving improved performance, especially for cold users and items, with reduced memory cost. CEL enables automatic and dynamic clustering of users and items in a top-down fashion, where clustered entities jointly learn a shared embedding. The accelerated version of CEL has an optimal time complexity, which supports efficient online updates. Theoretically, we prove the identifiability and the existence of a unique optimal number of clusters for CEL in the context of nonnegative matrix factorization. Empirically, we validate the effectiveness of CEL on three public datasets and one business dataset, showing its consistently superior performance against current state-of-the-art methods. In particular, when incorporating CEL into the business model, it brings an improvement of $+0.6\%$ in AUC, which translates into a significant revenue gain; meanwhile, the size of the embedding table gets $2650$ times smaller.

Integrated sensing and communication improves the design of systems by combining sensing and communication functions for increased efficiency, accuracy, and cost savings. The optimal integration requires understanding the trade-off between sensing and communication, but this can be difficult due to the lack of unified performance metrics. In this paper, an information-theoretical approach is used to design the system with a unified metric. A sensing rate is introduced to measure the amount of information obtained by a pulse-Doppler radar system. An approximation and lower bound of the sensing rate is obtained in closed forms. Using both the derived sensing information and communication rates, the optimal bandwidth allocation strategy is found for maximizing the weighted sum of the spectral efficiency for sensing and communication. The simulation results confirm the validity of the approximation and the effectiveness of the proposed bandwidth allocation.

北京阿比特科技有限公司