A recent study by De et al. (2022) has reported that large-scale representation learning through pre-training on a public dataset significantly enhances differentially private (DP) learning in downstream tasks, despite the high dimensionality of the feature space. To theoretically explain this phenomenon, we consider the setting of a layer-peeled model in representation learning, which results in interesting phenomena related to learned features in deep learning and transfer learning, known as Neural Collapse (NC). Within the framework of NC, we establish an error bound indicating that the misclassification error is independent of dimension when the distance between actual features and the ideal ones is smaller than a threshold. Additionally, the quality of the features in the last layer is empirically evaluated under different pre-trained models within the framework of NC, showing that a more powerful transformer leads to a better feature representation. Furthermore, we reveal that DP fine-tuning is less robust compared to fine-tuning without DP, particularly in the presence of perturbations. These observations are supported by both theoretical analyses and experimental evaluation. Moreover, to enhance the robustness of DP fine-tuning, we suggest several strategies, such as feature normalization or employing dimension reduction methods like Principal Component Analysis (PCA). Empirically, we demonstrate a significant improvement in testing accuracy by conducting PCA on the last-layer features.
Recent studies have shown that Large Language Models (LLMs) struggle to accurately retrieve information and maintain reasoning capabilities when processing long-context inputs. To address these limitations, we propose a finetuning approach utilizing a carefully designed synthetic dataset comprising numerical key-value retrieval tasks. Our experiments on models like GPT-3.5 Turbo and Mistral 7B demonstrate that finetuning LLMs on this dataset significantly improves LLMs' information retrieval and reasoning capabilities in longer-context settings. We present an analysis of the finetuned models, illustrating the transfer of skills from synthetic to real task evaluations (e.g., $10.5\%$ improvement on $20$ documents MDQA at position $10$ for GPT-3.5 Turbo). We also find that finetuned LLMs' performance on general benchmarks remains almost constant while LLMs finetuned on other baseline long-context augmentation data can encourage hallucination (e.g., on TriviaQA, Mistral 7B finetuned on our synthetic data cause no performance drop while other baseline data can cause a drop that ranges from $2.33\%$ to $6.19\%$). Our study highlights the potential of finetuning on synthetic data for improving the performance of LLMs on longer-context tasks.
Recent studies have shown promising results in utilizing multimodal large language models (MLLMs) for computer vision tasks such as object detection and semantic segmentation. However, many challenging video tasks remain under-explored. Video-language tasks necessitate spatial and temporal comprehension and require significant compute. Therefore, prior works have developed complex, highly specialized architectures or leveraged additional input signals such as video transcripts to best encode contextual and temporal information, which limits their generality and can be impractical. One particularly challenging task is video moment retrieval, which requires precise temporal and contextual grounding. This work demonstrates the surprising effectiveness of leveraging image-text pretrained MLLMs for moment retrieval. We introduce Mr. BLIP (Mr. as in Moment Retrieval), a multimodal, single-stage model that requires no expensive video-language pretraining, no additional input signal (e.g., no transcript or audio), and has a simpler and more versatile design than prior state-of-the-art methods. We achieve a new state-of-the-art in moment retrieval on the widely used benchmarks Charades-STA, QVHighlights, and ActivityNet Captions and illustrate our method's versatility with a new state-of-the-art in temporal action localization on ActivityNet. Notably, we attain over 9% (absolute) higher Recall (at 0.5 and 0.7 IoU) on the challenging long-video multi-moment QVHighlights benchmark. Our code is publicly available.
The integration of experiment technologies with large language models (LLMs) is transforming scientific research, offering AI capabilities beyond specialized problem-solving to becoming research assistants for human scientists. In power systems, simulations are essential for research. However, LLMs face significant challenges in power system simulations due to limited pre-existing knowledge and the complexity of power grids. To address this issue, this work proposes a modular framework that integrates expertise from both the power system and LLM domains. This framework enhances LLMs' ability to perform power system simulations on previously unseen tools. Validated using 34 simulation tasks in Daline, a (optimal) power flow simulation and linearization toolbox not yet exposed to LLMs, the proposed framework improved GPT-4o's simulation coding accuracy from 0% to 96.07%, also outperforming the ChatGPT-4o web interface's 33.8% accuracy (with the entire knowledge base uploaded). These results highlight the potential of LLMs as research assistants in power systems.
We present a multimodal learning-based method to simultaneously synthesize co-speech facial expressions and upper-body gestures for digital characters using RGB video data captured using commodity cameras. Our approach learns from sparse face landmarks and upper-body joints, estimated directly from video data, to generate plausible emotive character motions. Given a speech audio waveform and a token sequence of the speaker's face landmark motion and body-joint motion computed from a video, our method synthesizes the motion sequences for the speaker's face landmarks and body joints to match the content and the affect of the speech. We design a generator consisting of a set of encoders to transform all the inputs into a multimodal embedding space capturing their correlations, followed by a pair of decoders to synthesize the desired face and pose motions. To enhance the plausibility of synthesis, we use an adversarial discriminator that learns to differentiate between the face and pose motions computed from the original videos and our synthesized motions based on their affective expressions. To evaluate our approach, we extend the TED Gesture Dataset to include view-normalized, co-speech face landmarks in addition to body gestures. We demonstrate the performance of our method through thorough quantitative and qualitative experiments on multiple evaluation metrics and via a user study. We observe that our method results in low reconstruction error and produces synthesized samples with diverse facial expressions and body gestures for digital characters.
We present a comprehensive framework that unifies several research areas within the context of vertex-weighted bipartite graphs, providing deeper insights and improved solutions. The fundamental solution concept for each problem involves refinement, where vertex weights on one side are distributed among incident edges. The primary objective is to identify a refinement pair with specific optimality conditions that can be verified locally. This framework connects existing and new problems that are traditionally studied in different contexts. We explore three main problems: (1) density-friendly hypergraph decomposition, (2) universally closest distribution refinements problem, and (3) symmetric Fisher Market equilibrium. Our framework presents a symmetric view of density-friendly hypergraph decomposition, wherein hyperedges and nodes play symmetric roles. This symmetric decomposition serves as a tool for deriving precise characterizations of optimal solutions for other problems and enables the application of algorithms from one problem to another.
We study computational-statistical gaps for improper learning in sparse linear regression. More specifically, given $n$ samples from a $k$-sparse linear model in dimension $d$, we ask what is the minimum sample complexity to efficiently (in time polynomial in $d$, $k$, and $n$) find a potentially dense estimate for the regression vector that achieves non-trivial prediction error on the $n$ samples. Information-theoretically this can be achieved using $\Theta(k \log (d/k))$ samples. Yet, despite its prominence in the literature, there is no polynomial-time algorithm known to achieve the same guarantees using less than $\Theta(d)$ samples without additional restrictions on the model. Similarly, existing hardness results are either restricted to the proper setting, in which the estimate must be sparse as well, or only apply to specific algorithms. We give evidence that efficient algorithms for this task require at least (roughly) $\Omega(k^2)$ samples. In particular, we show that an improper learning algorithm for sparse linear regression can be used to solve sparse PCA problems (with a negative spike) in their Wishart form, in regimes in which efficient algorithms are widely believed to require at least $\Omega(k^2)$ samples. We complement our reduction with low-degree and statistical query lower bounds for the sparse PCA problems from which we reduce. Our hardness results apply to the (correlated) random design setting in which the covariates are drawn i.i.d. from a mean-zero Gaussian distribution with unknown covariance.
The rapid development of deep learning has made a great progress in segmentation, one of the fundamental tasks of computer vision. However, the current segmentation algorithms mostly rely on the availability of pixel-level annotations, which are often expensive, tedious, and laborious. To alleviate this burden, the past years have witnessed an increasing attention in building label-efficient, deep-learning-based segmentation algorithms. This paper offers a comprehensive review on label-efficient segmentation methods. To this end, we first develop a taxonomy to organize these methods according to the supervision provided by different types of weak labels (including no supervision, coarse supervision, incomplete supervision and noisy supervision) and supplemented by the types of segmentation problems (including semantic segmentation, instance segmentation and panoptic segmentation). Next, we summarize the existing label-efficient segmentation methods from a unified perspective that discusses an important question: how to bridge the gap between weak supervision and dense prediction -- the current methods are mostly based on heuristic priors, such as cross-pixel similarity, cross-label constraint, cross-view consistency, cross-image relation, etc. Finally, we share our opinions about the future research directions for label-efficient deep segmentation.
Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.