亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the purpose of defending against lateral movement in today's borderless networks, Zero Trust Architecture (ZTA) adoption is gaining momentum. With a full scale ZTA implementation, it is unlikely that adversaries will be able to spread through the network starting from a compromised endpoint. However, the already authenticated and authorised session of a compromised endpoint can be leveraged to perform limited, though malicious, activities ultimately rendering the endpoints the Achilles heel of ZTA. To effectively detect such attacks, distributed collaborative intrusion detection systems with an attack scenario-based approach have been developed. Nonetheless, Advanced Persistent Threats (APTs) have demonstrated their ability to bypass this approach with a high success ratio. As a result, adversaries can pass undetected or potentially alter the detection logging mechanisms to achieve a stealthy presence. Recently, blockchain technology has demonstrated solid use cases in the cyber security domain. In this paper, motivated by the convergence of ZTA and blockchain-based intrusion detection and prevention, we examine how ZTA can be augmented onto endpoints. Namely, we perform a state-of-the-art review of ZTA models, real-world architectures with a focus on endpoints, and blockchain-based intrusion detection systems. We discuss the potential of blockchain's immutability fortifying the detection process and identify open challenges as well as potential solutions and future directions.

相關內容

Beyond Visual Line of Sight operation enables drones to surpass the limits imposed by the reach and constraints of their operator's eyes. It extends their range and, as such, productivity, and profitability. Drones operating BVLOS include a variety of highly sensitive assets and information that could be subject to unintentional or intentional security vulnerabilities. As a solution, blockchain-based services could enable secure and trustworthy exchange and storage of related data. They also allow for traceability of exchanges and perform synchronization with other nodes in the network. However, most of the blockchain-based approaches focus on the network and the protocol aspects of drone systems. Few studies focus on the architectural level of on-chip compute platforms of drones. Based on this observation, the contribution of this paper is twofold: (1) a generic blockchain-based service architecture for on-chip compute platforms of drones, and (2) a concrete example realization of the proposed generic architecture.

Blockchain systems come with a promise of decentralization that often stumbles on a roadblock when key decisions about modifying the software codebase need to be made. This is attested by the fact that both of the two major cryptocurrencies, Bitcoin and Ethereum, have undergone hard forks that resulted in the creation of alternative systems, creating confusion and opportunities for fraudulent activities. These events, and numerous others, underscore the importance of Blockchain governance, namely the set of processes that blockchain platforms utilize in order to perform decision-making and converge to a widely accepted direction for the system to evolve. While a rich topic of study in other areas, governance of blockchain platforms is lacking a well established set of methods and practices that are adopted industry wide. This makes the topic of blockchain governance a fertile domain for a thorough systematization that we undertake in this work. We start by distilling a comprehensive array of properties for sound governance systems drawn from academic sources as well as grey literature of election systems and blockchain white papers. These are divided into seven categories, confidentiality, verifiability, accountability, sustainability, Pareto efficiency, suffrage and liveness that capture the whole spectrum of desiderata of governance systems. We proceed to classify ten well-documented blockchain systems. While all properties are satisfied, even partially, by at least one system, no system that satisfies most of them. Our work lays out a foundation for assessing blockchain governance processes. While it highlights shortcomings and deficiencies in currently deployed systems, it can also be a catalyst for improving these processes to the highest possible standard with appropriate trade-offs, something direly needed for blockchain platforms to operate effectively in the long term.

IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) is an essential routing protocol to enable communications for IoT networks with low power devices. RPL uses an objective function and routing constraints to find an optimized routing path for each node in the network. However, recent research has shown that topological attacks, such as selective forwarding attacks, pose great challenges to the secure routing of IoT networks. Many conventional secure routing solutions, on the other hand, are computationally heavy to be directly applied in resource-constrained IoT networks. There is an urgent need to develop lightweight secure routing solutions for IoT networks. In this paper, we first design and implement a series of advanced selective forwarding attacks from the attack perspective, which can flexibly select the type and percentage of forwarding packets in an energy efficient way, and even bad-mouth other innocent nodes in the network. Experiment results show that the proposed attacks can maximize the attack consequences (i.e. number of dropped packets) while maintaining undetected. Moreover, we propose a lightweight trust-based defense solution to detect and eliminate malicious selective forwarding nodes from the network. The results show that the proposed defense solution can achieve high detection accuracy with very limited extra energy usage (i.e. 3.4%).

It is widely expected that future networks of 6G and beyond will deliver on the unachieved goals set by 5G. Technologies such as Internet of Skills and Industry 4.0 will become stable and viable, as a direct consequence of networks that offer sustained and reliable mobile performance levels. The primary challenges for future technologies are not just low-latency and high-bandwidth. The more critical problem Mobile Service Providers (MSPs) will face will be in balancing the inflated demands of network connections and customers' trust in the network service, that is, being able to interconnect billions of unique devices while adhering to the agreed terms of Service Level Agreements (SLAs). To meet these targets, it is self-evident that MSPs cannot operate in a solitary environment. They must enable cooperation among themselves in a manner that ensures trust, both between themselves as well as with customers. In this study, we present the BEAT (Blockchain-Enabled Accountable and Transparent) Infrastructure Sharing architecture. BEAT exploits the inherent properties of permissioned type of distributed ledger technology (i.e., permissioned distributed ledgers) to deliver on accountability and transparency metrics whenever infrastructure needs to be shared between providers. We also propose a lightweight method that enables device-level accountability. BEAT has been designed to be deployable directly as only minor software upgrades to network devices such as routers. Our simulations on a resource-limited device show that BEAT adds only a few seconds of overhead processing time -- with the latest state-of-the-art network devices, we can reasonably anticipate much lower overheads.

Attackers demonstrated the use of remote access to the in-vehicle network of connected vehicles to launch cyber-attacks and remotely take control of these vehicles. Machine-learning-based Intrusion Detection Systems (IDSs) techniques have been proposed for the detection of such attacks. The evaluation of some of these IDS demonstrated their efficacy in terms of accuracy in detecting message injections but was performed offline, which limits the confidence in their use for real-time protection scenarios. This paper evaluates four architecture designs for real-time IDS for connected vehicles using Controller Area Network (CAN) datasets collected from a moving vehicle under malicious speed reading message injections. The evaluation shows that a real-time IDS for a connected vehicle designed as two processes, a process for CAN Bus monitoring and another one for anomaly detection engine is reliable (no loss of messages) and could be used for real-time resilience mechanisms as a response to cyber-attacks.

The conversational agents is one of the most interested topics in computer science field in the recent decade. Which can be composite from more than one subject in this field, which you need to apply Natural Language Processing Concepts and some Artificial Intelligence Techniques such as Deep Learning methods to make decision about how should be the response. This paper is dedicated to discuss the system architecture for the conversational agent and explain each component in details.

The spirit of "blockchain technology" is a distributed database in which saved data is transparent, accountable, public, immutable, and traceable. This base-level disruptive technology can boost the security and privacy-related efficiency of various domains. As Bangladesh is currently aiming for sustainable development, blockchain technology adoption by local researchers is growing robustly. However, in Bangladesh, the blockchain Technology Acceptance Model (TAM) is not yet well structured which is also limiting the perspective of local developers and researchers. Therefore, sectors like governance, healthcare, security, privacy, farming, information authentication, cryptocurrencies, internet architecture, data, and so on are unable to utilize the full potential of this technology. In this research, the authors conduct an in-depth review of such types of blockchain technology-related research articles that have been published recently and are also solely focused on Bangladesh. From 5 publishers (IEEE Xplore, ACM, ScienceDirect, Taylor & Francis, and SpringerLink) this study analyses 70 articles published during the year 2016-2020. The study results find the top 13 sectors where Bangladeshi researchers are currently focusing on. Those studies identify that the rigid policy by the government, scarcity of expert researchers, and lack of resources are the main reasons why Bangladesh is still struggling to accommodate blockchain extensively. In addition, published papers are mostly based on theoretical concepts without an appropriate implementation. Finally, this study will be a great resource to the developers, entrepreneurs, and technology enthusiasts to determine the strategic plan for adopting blockchain technology in Bangladesh or even in any other developing country.

Industry 4.0 in health care has evolved drastically over the past century. In fact, it is evolving every day, with new tools and strategies being developed by physicians and researchers alike. Health care and technology have been intertwined together with the advancement of cloud computing and big data. This study aims to analyze the impact of industry 4.0 in health care systems. To do so, a systematic literature review was carried out considering peer-reviewed articles extracted from the two popular databases: Scopus and Web of Science (WoS). PRISMA statement 2015 was used to include and exclude that data. At first, a bibliometric analysis was carried out using 346 articles considering the following factors: publication by year, journal, authors, countries, institutions, authors' keywords, and citations. Finally, qualitative analysis was carried out based on selected 32 articles considering the following factors: a conceptual framework, schedule problems, security, COVID-19, digital supply chain, and blockchain technology. Study finding suggests that during the onset of COVID-19, health care and industry 4.0 has been merged and evolved jointly, considering various crisis such as data security, resource allocation, and data transparency. Industry 4.0 enables many technologies such as the internet of things (IoT), blockchain, big data, cloud computing, machine learning, deep learning, information, and communication technologies (ICT) to track patients' records and helps reduce social transmission COVID-19 and so on. The study findings will give future researchers and practitioners some insights regarding the integration of health care and Industry 4.0.

The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.

Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.

北京阿比特科技有限公司