亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, trace generation has emerged as a significant challenge within the Process Mining community. Deep Learning (DL) models have demonstrated accuracy in reproducing the features of the selected processes. However, current DL generative models are limited in their ability to adapt the learned distributions to generate data samples based on specific conditions or attributes. This limitation is particularly significant because the ability to control the type of generated data can be beneficial in various contexts, enabling a focus on specific behaviours, exploration of infrequent patterns, or simulation of alternative 'what-if' scenarios. In this work, we address this challenge by introducing a conditional model for process data generation based on a conditional variational autoencoder (CVAE). Conditional models offer control over the generation process by tuning input conditional variables, enabling more targeted and controlled data generation. Unlike other domains, CVAE for process mining faces specific challenges due to the multiperspective nature of the data and the need to adhere to control-flow rules while ensuring data variability. Specifically, we focus on generating process executions conditioned on control flow and temporal features of the trace, allowing us to produce traces for specific, identified sub-processes. The generated traces are then evaluated using common metrics for generative model assessment, along with additional metrics to evaluate the quality of the conditional generation

相關內容

Processing 是一門開(kai)源(yuan)編程(cheng)語言和(he)(he)與之配(pei)套的集成開(kai)發環境(IDE)的名稱。Processing 在(zai)電子藝(yi)術和(he)(he)視覺設計社(she)區被用來教授編程(cheng)基礎,并運用于大量的新媒體(ti)和(he)(he)互動藝(yi)術作品中。

As world knowledge advances and new task schemas emerge, Continual Learning (CL) becomes essential for keeping Large Language Models (LLMs) current and addressing their shortcomings. This process typically involves continual instruction tuning (CIT) and continual pre-training (CPT) to enable these models to adapt to novel tasks and acquire critical knowledge. However, collecting sufficient CPT data and efficiently bridging knowledge gaps remain significant challenges. Inspired by the 'summarizing mistakes' strategy, we propose the Continue Evolving from Mistakes (CEM) method, a data-efficient approach aiming to collect CPT data and continually improve LLMs' performance through iterative evaluation and supplementation with mistake-relevant knowledge. To further optimize data usage and mitigate forgetting, we introduce a novel training paradigm that combines CIT and CPT. Experiments show that CEM substantially enhances multiple models' performance on both in-domain and out-of-domain QA tasks, achieving gains of up to 29.63%. Code and datasets are available on //anonymous.4open.science/r/cem-BB25.

As the Internet of Things (IoT) industry advances, the imperative to secure IoT devices has become increasingly critical. Current practices in both industry and academia advocate for the enhancement of device security through key installation. However, it has been observed that, in practice, IoT vendors frequently assign shared keys to batches of devices. This practice can expose devices to risks, such as data theft by attackers or large-scale Distributed Denial of Service (DDoS) attacks. To address this issue, our intuition is to assign a unique key to each device. Unfortunately, this strategy proves to be highly complex within the IoT context, as existing keys are typically hardcoded into the firmware, necessitating the creation of bespoke firmware for each device. Furthermore, correct pairing of device keys with their respective devices is crucial. Errors in this pairing process would incur substantial human and temporal resources to rectify and require extensive communication between IoT vendors, device manufacturers, and cloud platforms, leading to significant communication overhead. To overcome these challenges, we propose the OTA-Key scheme. This approach fundamentally decouples device keys from the firmware features stored in flash memory, utilizing an intermediary server to allocate unique device keys in two distinct stages and update keys. We conducted a formal security verification of our scheme using ProVerif and assessed its performance through a series of evaluations. The results demonstrate that our scheme is secure and effectively manages the large-scale distribution and updating of unique device keys. Additionally, it achieves significantly lower update times and data transfer volumes compared to other schemes.

In recent years, we are seeing considerable interest in conversational agents with the rise of large language models (LLMs). Although they offer considerable advantages, LLMs also present significant risks, such as hallucination, which hinder their widespread deployment in industry. Moreover, low-resource languages such as African ones are still underrepresented in these systems limiting their performance in these languages. In this paper, we illustrate a more classical approach based on modular architectures of Task-oriented Dialog Systems (ToDS) offering better control over outputs. We propose a chatbot generation engine based on the Rasa framework and a robust methodology for projecting annotations onto the Wolof language using an in-house machine translation system. After evaluating a generated chatbot trained on the Amazon Massive dataset, our Wolof Intent Classifier performs similarly to the one obtained for French, which is a resource-rich language. We also show that this approach is extensible to other low-resource languages, thanks to the intent classifier's language-agnostic pipeline, simplifying the design of chatbots in these languages.

Concept Drift has been extensively studied within the context of Stream Learning. However, it is often assumed that the deployed model's predictions play no role in the concept drift the system experiences. Closer inspection reveals that this is not always the case. Automated trading might be prone to self-fulfilling feedback loops. Likewise, malicious entities might adapt to evade detectors in the adversarial setting resulting in a self-negating feedback loop that requires the deployed models to constantly retrain. Such settings where a model may induce concept drift are called performative. In this work, we investigate this phenomenon. Our contributions are as follows: First, we define performative drift within a stream learning setting and distinguish it from other causes of drift. We introduce a novel type of drift detection task, aimed at identifying potential performative concept drift in data streams. We propose a first such performative drift detection approach, called CheckerBoard Performative Drift Detection (CB-PDD). We apply CB-PDD to both synthetic and semi-synthetic datasets that exhibit varying degrees of self-fulfilling feedback loops. Results are positive with CB-PDD showing high efficacy, low false detection rates, resilience to intrinsic drift, comparability to other drift detection techniques, and an ability to effectively detect performative drift in semi-synthetic datasets. Secondly, we highlight the role intrinsic (traditional) drift plays in obfuscating performative drift and discuss the implications of these findings as well as the limitations of CB-PDD.

This is a report of an NSF workshop titled "Envisioning National Resources for Artificial Intelligence Research" held in Alexandria, Virginia, in May 2024. The workshop aimed to identify initial challenges and opportunities for national resources for AI research (e.g., compute, data, models, etc.) and to facilitate planning for the envisioned National AI Research Resource. Participants included AI and cyberinfrastructure (CI) experts. The report outlines significant findings and identifies needs and recommendations from the workshop.

The introduction of Feature Pyramid Network (FPN) has significantly improved object detection performance. However, substantial challenges remain in detecting tiny objects, as their features occupy only a very small proportion of the feature maps. Although FPN integrates multi-scale features, it does not directly enhance or enrich the features of tiny objects. Furthermore, FPN lacks spatial perception ability. To address these issues, we propose a novel High Frequency and Spatial Perception Feature Pyramid Network (HS-FPN) with two innovative modules. First, we designed a high frequency perception module (HFP) that generates high frequency responses through high pass filters. These high frequency responses are used as mask weights from both spatial and channel perspectives to enrich and highlight the features of tiny objects in the original feature maps. Second, we developed a spatial dependency perception module (SDP) to capture the spatial dependencies that FPN lacks. Our experiments demonstrate that detectors based on HS-FPN exhibit competitive advantages over state-of-the-art models on the AI-TOD dataset for tiny object detection.

3D Gaussian Splatting (3DGS) has attracted significant attention for its potential to revolutionize 3D representation, rendering, and interaction. Despite the rapid growth of 3DGS research, its direct application to Extended Reality (XR) remains underexplored. Although many studies recognize the potential of 3DGS for XR, few have explicitly focused on or demonstrated its effectiveness within XR environments. In this paper, we aim to synthesize innovations in 3DGS that show specific potential for advancing XR research and development. We conduct a comprehensive review of publicly available 3DGS papers, with a focus on those referencing XR-related concepts. Additionally, we perform an in-depth analysis of innovations explicitly relevant to XR and propose a taxonomy to highlight their significance. Building on these insights, we propose several prospective XR research areas where 3DGS can make promising contributions, yet remain rarely touched. By investigating the intersection of 3DGS and XR, this paper provides a roadmap to push the boundaries of XR using cutting-edge 3DGS techniques.

Enabling LLMs to handle lengthy context is currently a research hotspot. Most LLMs are built upon rotary position embedding (RoPE), a popular position encoding method. Therefore, a prominent path is to extrapolate the RoPE trained on comparably short texts to far longer texts. A heavy bunch of efforts have been dedicated to boosting the extrapolation via extending the formulations of the RoPE, however, few of them have attempted to showcase their inner workings comprehensively. In this paper, we are driven to offer a straightforward yet in-depth understanding of RoPE extensions from an attention perspective and on two benchmarking tasks. A broad array of experiments reveals several valuable findings: 1) Maintaining attention patterns to those at the pretrained length improves extrapolation; 2) Large attention uncertainty leads to retrieval errors; 3) Using longer continual pretraining lengths for RoPE extensions could reduce attention uncertainty and significantly enhance extrapolation.

Knowledge plays a critical role in artificial intelligence. Recently, the extensive success of pre-trained language models (PLMs) has raised significant attention about how knowledge can be acquired, maintained, updated and used by language models. Despite the enormous amount of related studies, there still lacks a unified view of how knowledge circulates within language models throughout the learning, tuning, and application processes, which may prevent us from further understanding the connections between current progress or realizing existing limitations. In this survey, we revisit PLMs as knowledge-based systems by dividing the life circle of knowledge in PLMs into five critical periods, and investigating how knowledge circulates when it is built, maintained and used. To this end, we systematically review existing studies of each period of the knowledge life cycle, summarize the main challenges and current limitations, and discuss future directions.

Large, pre-trained transformer-based language models such as BERT have drastically changed the Natural Language Processing (NLP) field. We present a survey of recent work that uses these large language models to solve NLP tasks via pre-training then fine-tuning, prompting, or text generation approaches. We also present approaches that use pre-trained language models to generate data for training augmentation or other purposes. We conclude with discussions on limitations and suggested directions for future research.

北京阿比特科技有限公司