亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In 1973, Lemmens and Seidel posed the problem of determining the maximum number of equiangular lines in $\mathbb{R}^r$ with angle $\arccos(\alpha)$ and gave a partial answer in the regime $r \leq 1/\alpha^2 - 2$. At the other extreme where $r$ is at least exponential in $1/\alpha$, recent breakthroughs have led to an almost complete resolution of this problem. In this paper, we introduce a new method for obtaining upper bounds which unifies and improves upon previous approaches, thereby yielding bounds which bridge the gap between the aforementioned regimes and are best possible either exactly or up to a small multiplicative constant. Our approach relies on orthogonal projection of matrices with respect to the Frobenius inner product and as a byproduct, it yields the first extension of the Alon-Boppana theorem to dense graphs, with equality for strongly regular graphs corresponding to $\binom{r+1}{2}$ equiangular lines in $\mathbb{R}^r$. Applications of our method in the complex setting will be discussed as well.

相關內容

We study the $k$-th nearest neighbor distance function from a finite point-set in $\mathbb{R}^d$. We provide a Morse theoretic framework to analyze the sub-level set topology. In particular, we present a simple combinatorial-geometric characterization for critical points and their indices, along with detailed information about the possible changes in homology at the critical levels. We conclude by computing the expected number of critical points for a homogeneous Poisson process. Our results deliver significant insights and tools for the analysis of persistent homology in order-$k$ Delaunay mosaics, and random $k$-fold coverage.

In the distributional Twenty Questions game, Bob chooses a number $x$ from $1$ to $n$ according to a distribution $\mu$, and Alice (who knows $\mu$) attempts to identify $x$ using Yes/No questions, which Bob answers truthfully. Her goal is to minimize the expected number of questions. The optimal strategy for the Twenty Questions game corresponds to a Huffman code for $\mu$, yet this strategy could potentially uses all $2^n$ possible questions. Dagan et al. constructed a set of $1.25^{n+o(n)}$ questions which suffice to construct an optimal strategy for all $\mu$, and showed that this number is optimal (up to sub-exponential factors) for infinitely many $n$. We determine the optimal size of such a set of questions for all $n$ (up to sub-exponential factors), answering an open question of Dagan et al. In addition, we generalize the results of Dagan et al. to the $d$-ary setting, obtaining similar results with $1.25$ replaced by $1 + (d-1)/d^{d/(d-1)}$.

We investigate completions of partial combinatory algebras (pcas), in particular of Kleene's second model $\mathcal{K}_2$ and generalizations thereof. We consider weak and strong notions of embeddability and completion that have been studied before. By a result of Klop it is known that not every pca has a strong completion. The study of completions of $\mathcal{K}_2$ has as corollaries that weak and strong embeddings are different, and that every countable pca has a weak completion. We then consider generalizations of $\mathcal{K}_2$ for larger cardinals, and use these to show that it is consistent that every pca has a weak completion.

We examine nonlinear Kolmogorov partial differential equations (PDEs). Here the nonlinear part of the PDE comes from its Hamiltonian where one maximizes over all possible drift and diffusion coefficients which fall within a $\varepsilon$-neighborhood of pre-specified baseline coefficients. Our goal is to quantify and compute how sensitive those PDEs are to such a small nonlinearity, and then use the results to develop an efficient numerical method for their approximation. We show that as $\varepsilon\downarrow 0$, the nonlinear Kolmogorov PDE equals the linear Kolmogorov PDE defined with respect to the corresponding baseline coefficients plus $\varepsilon$ times a correction term which can be also characterized by the solution of another linear Kolmogorov PDE involving the baseline coefficients. As these linear Kolmogorov PDEs can be efficiently solved in high-dimensions by exploiting their Feynman-Kac representation, our derived sensitivity analysis then provides a Monte Carlo based numerical method which can efficiently solve these nonlinear Kolmogorov equations. We provide numerical examples in up to 100 dimensions to empirically demonstrate the applicability of our numerical method.

As an important part of genetic algorithms (GAs), mutation operators is widely used in evolutionary algorithms to solve $\mathcal{NP}$-hard problems because it can increase the population diversity of individual. Due to limitations in mathematical tools, the mutation probability of the mutation operator is primarily empirically set in practical applications. In this paper, we propose a novel reduction method for the 0-1 knapsack problem(0-1 KP) and an improved mutation operator (IMO) based on the assumption $\mathcal{NP}\neq\mathcal{P}$, along with the utilization of linear relaxation techniques and a recent result by Dey et al. (Math. Prog., pp 569-587, 2022). We employ this method to calculate an upper bound of the mutation probability in general instances of the 0-1 KP, and construct an instance where the mutation probability does not tend towards 0 as the problem size increases. Finally, we prove that the probability of the IMO hitting the optimal solution within only a single iteration in large-scale instances is superior to that of the traditional mutation operator.

The merit factor of a $\{-1, 1\}$ binary sequence measures the collective smallness of its non-trivial aperiodic autocorrelations. Binary sequences with large merit factor are important in digital communications because they allow the efficient separation of signals from noise. It is a longstanding open question whether the maximum merit factor is asymptotically unbounded and, if so, what is its limiting value. Attempts to answer this question over almost sixty years have identified certain classes of binary sequences as particularly important: skew-symmetric sequences, symmetric sequences, and anti-symmetric sequences. Using only elementary methods, we find an exact formula for the mean and variance of the reciprocal merit factor of sequences in each of these classes, and in the class of all binary sequences. This provides a much deeper understanding of the distribution of the merit factor in these four classes than was previously available. A consequence is that, for each of the four classes, the merit factor of a sequence drawn uniformly at random from the class converges in probability to a constant as the sequence length increases.

We consider extended $1$-perfect codes in Hamming graphs $H(n,q)$. Such nontrivial codes are known only when $n=2^k$, $k\geq 1$, $q=2$, or $n=q+2$, $q=2^m$, $m\geq 1$. Recently, Bespalov proved nonexistence of extended $1$-perfect codes for $q=3$, $4$, $n>q+2$. In this work, we characterize all positive integers $n$, $r$ and prime $p$, for which there exist such a code in $H(n,p^r)$.

We investigate the R\'enyi entropy of independent sums of integer valued random variables through Fourier theoretic means, and give sharp comparisons between the variance and the R\'enyi entropy, for Poisson-Bernoulli variables. As applications we prove that a discrete ``min-entropy power'' is super additive on independent variables up to a universal constant, and give new bounds on an entropic generalization of the Littlewood-Offord problem that are sharp in the ``Poisson regime''.

The logics $\mathsf{CS4}$ and $\mathsf{IS4}$ are the two leading intuitionistic variants of the modal logic $\mathsf{S4}$. Whether the finite model property holds for each of these logics have been long-standing open problems. It was recently shown that $\mathsf{IS4}$ has the finite frame property and thus the finite model property. In this paper, we prove that $\mathsf{CS4}$ also enjoys the finite frame property. Additionally, we investigate the following three logics closely related to $\mathsf{IS4}$. The logic $\mathsf{GS4}$ is obtained by adding the G\"odel--Dummett axiom to $\mathsf{IS4}$; it is both a superintuitionistic and a fuzzy logic and has previously been given a real-valued semantics. We provide an alternative birelational semantics and prove strong completeness with respect to this semantics. The extension $\mathsf{GS4^c}$ of $\mathsf{GS4}$ corresponds to requiring a crisp accessibility relation on the real-valued semantics. We give a birelational semantics corresponding to an extra confluence condition on the $\mathsf{GS4}$ birelational semantics and prove strong completeness. Neither of these two logics have the finite model property with respect to their real-valued semantics, but we prove that they have the finite frame property for their birelational semantics. Establishing the finite birelational frame property immediately establishes decidability, which was previously open for these two logics. Our proofs yield NEXPTIME upper bounds. The logic $\mathsf{S4I}$ is obtained from $\mathsf{IS4}$ by reversing the roles of the modal and intuitionistic relations in the birelational semantics. We also prove the finite frame property, and thereby decidability, for $\mathsf{S4I}$

Given a finite set, $A \subseteq \mathbb{R}^2$, and a subset, $B \subseteq A$, the \emph{MST-ratio} is the combined length of the minimum spanning trees of $B$ and $A \setminus B$ divided by the length of the minimum spanning tree of $A$. The question of the supremum, over all sets $A$, of the maximum, over all subsets $B$, is related to the Steiner ratio, and we prove this sup-max is between $2.154$ and $2.427$. Restricting ourselves to $2$-dimensional lattices, we prove that the sup-max is $2.0$, while the inf-max is $1.25$. By some margin the most difficult of these results is the upper bound for the inf-max, which we prove by showing that the hexagonal lattice cannot have MST-ratio larger than $1.25$.

北京阿比特科技有限公司