亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this article, we focus on the cooperative state estimation problem of a multi-agent system. Each agent is equipped with absolute and relative measurements. The purpose of this research is to make each agent generate its own state estimation with only local measurement information and local communication with neighborhood agents using Set Membership Filter(SMF). To handle this problem, we analyzed centralized SMF framework as a benchmark of distributed SMF and propose a finite-horizon method called OIT-Inspired centralized constrained zonotopic algorithm. Moreover, we put forward a distributed Set Membership Filtering(SMFing) framework and develop a distributed constained zonotopic algorithm. Finally, simulation verified our theoretical results, that our proposed algorithms can effectively estimate the state of each agent.

相關內容

Structured network pruning is a practical approach to reduce computation cost directly while retaining the CNNs' generalization performance in real applications. However, identifying redundant filters is a core problem in structured network pruning, and current redundancy criteria only focus on individual filters' attributes. When pruning sparsity increases, these redundancy criteria are not effective or efficient enough. Since the filter-wise interaction also contributes to the CNN's prediction accuracy, we integrate the filter-wise interaction into the redundancy criterion. In our criterion, we introduce the filter importance and filter utilization strength to reflect the decision ability of individual and multiple filters. Utilizing this new redundancy criterion, we propose a structured network pruning approach SNPFI (Structured Network Pruning by measuring Filter-wise Interaction). During the pruning, the SNPFI can automatically assign the proper sparsity based on the filter utilization strength and eliminate the useless filters by filter importance. After the pruning, the SNPFI can recover pruned model's performance effectively without iterative training by minimizing the interaction difference. We empirically demonstrate the effectiveness of the SNPFI with several commonly used CNN models, including AlexNet, MobileNetv1, and ResNet-50, on various image classification datasets, including MNIST, CIFAR-10, and ImageNet. For all experimental CNN models, nearly 60% of computation is reduced in a network compression while the classification accuracy remains.

This article introduces the R package hermiter which facilitates estimation of univariate and bivariate probability density functions and cumulative distribution functions along with full quantile functions (univariate) and nonparametric correlation coefficients (bivariate) using Hermite series based estimators. The algorithms implemented in the hermiter package are particularly useful in the sequential setting (both stationary and non-stationary) and one-pass batch estimation setting for large data sets. In addition, the Hermite series based estimators are approximately mergeable allowing parallel and distributed estimation.

While evolutionary computation is well suited for automatic discovery in engineering, it can also be used to gain insight into how humans and organizations could perform more effectively. Using a real-world problem of innovation search in organizations as the motivating example, this article first formalizes human creative problem solving as competitive multi-agent search (CMAS). CMAS is different from existing single-agent and team search problems in that the agents interact through knowledge of other agents' searches and through the dynamic changes in the search landscape that result from these searches. The main hypothesis is that evolutionary computation can be used to discover effective strategies for CMAS; this hypothesis is verified in a series of experiments on the NK model, i.e.\ partially correlated and tunably rugged fitness landscapes. Different specialized strategies are evolved for each different competitive environment, and also general strategies that perform well across environments. These strategies are more effective and more complex than hand-designed strategies and a strategy based on traditional tree search. Using a novel spherical visualization of such landscapes, insight is gained about how successful strategies work, e.g.\ by tracking positive changes in the landscape. The article thus provides a possible framework for studying various human creative activities as competitive multi-agent search in the future.

The auction of a single indivisible item is one of the most celebrated problems in mechanism design with transfers. Despite its simplicity, it provides arguably the cleanest and most insightful results in the literature. When the information that the auction is running is available to every participant, Myerson [20] provided a seminal result to characterize the incentive-compatible auctions along with revenue optimality. However, such a result does not hold in an auction on a network, where the information of the auction is spread via the agents, and they need incentives to forward the information. In recent times, a few auctions (e.g., [13, 18]) were designed that appropriately incentivized the intermediate nodes on the network to promulgate the information to potentially more valuable bidders. In this paper, we provide a Myerson-like characterization of incentive-compatible auctions on a network and show that the currently known auctions fall within this class of randomized auctions. We then consider a special class called the referral auctions that are inspired by the multi-level marketing mechanisms [1, 6, 7] and obtain the structure of a revenue optimal referral auction for i.i.d. bidders. Through experiments, we show that even for non-i.i.d. bidders there exist auctions following this characterization that can provide a higher revenue than the currently known auctions on networks.

We study sampling problems associated with potentials that lack smoothness. The potentials can be either convex or non-convex. Departing from the standard smooth setting, the potentials are only assumed to be weakly smooth or non-smooth, or the summation of multiple such functions. We develop a sampling algorithm that resembles proximal algorithms in optimization for this challenging sampling task. Our algorithm is based on a special case of Gibbs sampling known as the alternating sampling framework (ASF). The key contribution of this work is a practical realization of the ASF based on rejection sampling for both non-convex and convex potentials that are not necessarily smooth. In almost all the cases of sampling considered in this work, our proximal sampling algorithm achieves better complexity than all existing methods.

This paper proposes the cooperative use of zero velocity update (ZU) in a decentralized extended Kalman filter (DEKF) based localization algorithm for multi-robot systems. The filter utilizes inertial measurement unit (IMU), ultra-wideband (UWB), and odometry velocity measurements to improve the localization performance of the system in the presence of a GNSS-denied environment. The contribution of this work is to evaluate the benefits of using ZU in a DEKF-based localization algorithm. The algorithm is tested with real hardware in a video motion capture facility and a Robot Operating System (ROS) based simulation environment for unmanned ground vehicles (UGV). Both simulation and real-world experiments are performed to show the effectiveness of using ZU in one robot to reinstate the localization of other robots in a multi-robot system. Experimental results from GNSS-denied simulation and real-world environments show that using ZU with simple heuristics in the DEKF significantly improves the 3D localization accuracy.

Many current applications use recommendations in order to modify the natural user behavior, such as to increase the number of sales or the time spent on a website. This results in a gap between the final recommendation objective and the classical setup where recommendation candidates are evaluated by their coherence with past user behavior, by predicting either the missing entries in the user-item matrix, or the most likely next event. To bridge this gap, we optimize a recommendation policy for the task of increasing the desired outcome versus the organic user behavior. We show this is equivalent to learning to predict recommendation outcomes under a fully random recommendation policy. To this end, we propose a new domain adaptation algorithm that learns from logged data containing outcomes from a biased recommendation policy and predicts recommendation outcomes according to random exposure. We compare our method against state-of-the-art factorization methods, in addition to new approaches of causal recommendation and show significant improvements.

State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely neglected recently due to the availability of vast amount of data, and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors. A great challenge for using knowledge bases for recommendation is how to integrated large-scale structured and unstructured data, while taking advantage of collaborative filtering for highly accurate performance. Recent achievements on knowledge base embedding sheds light on this problem, which makes it possible to learn user and item representations while preserving the structure of their relationship with external knowledge. In this work, we propose to reason over knowledge base embeddings for personalized recommendation. Specifically, we propose a knowledge base representation learning approach to embed heterogeneous entities for recommendation. Experimental results on real-world dataset verified the superior performance of our approach compared with state-of-the-art baselines.

To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司