亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Proof terms are syntactic expressions that represent computations in term rewriting. They were introduced by Meseguer and exploited by van Oostrom and de Vrijer to study equivalence of reductions in (left-linear) first-order term rewriting systems. We study the problem of extending the notion of proof term to higher-order rewriting, which generalizes the first-order setting by allowing terms with binders and higher-order substitution. In previous works that devise proof terms for higher-order rewriting, such as Bruggink's, it has been noted that the challenge lies in reconciling composition of proof terms and higher-order substitution (\b{eta}-equivalence). This led Bruggink to reject "nested" composition, other than at the outermost level. In this paper, we propose a notion of higher-order proof term we dub rewrites that supports nested composition. We then define two notions of equivalence on rewrites, namely permutation equivalence and projection equivalence, and show that they coincide. We also propose a standardization procedure, that computes a canonical representative of the permutation equivalence class of a rewrite.

相關內容

Posterior sampling has been shown to be a powerful Bayesian approach for solving imaging inverse problems. The recent plug-and-play unadjusted Langevin algorithm (PnP-ULA) has emerged as a promising method for Monte Carlo sampling and minimum mean squared error (MMSE) estimation by combining physical measurement models with deep-learning priors specified using image denoisers. However, the intricate relationship between the sampling distribution of PnP-ULA and the mismatched data-fidelity and denoiser has not been theoretically analyzed. We address this gap by proposing a posterior-L2 pseudometric and using it to quantify an explicit error bound for PnP-ULA under mismatched posterior distribution. We numerically validate our theory on several inverse problems such as sampling from Gaussian mixture models and image deblurring. Our results suggest that the sensitivity of the sampling distribution of PnP-ULA to a mismatch in the measurement model and the denoiser can be precisely characterized.

Generative Flow Networks (GFlowNets) are amortized samplers that learn stochastic policies to sequentially generate compositional objects from a given unnormalized reward distribution. They can generate diverse sets of high-reward objects, which is an important consideration in scientific discovery tasks. However, as they are typically trained from a given extrinsic reward function, it remains an important open challenge about how to leverage the power of pre-training and train GFlowNets in an unsupervised fashion for efficient adaptation to downstream tasks. Inspired by recent successes of unsupervised pre-training in various domains, we introduce a novel approach for reward-free pre-training of GFlowNets. By framing the training as a self-supervised problem, we propose an outcome-conditioned GFlowNet (OC-GFN) that learns to explore the candidate space. Specifically, OC-GFN learns to reach any targeted outcomes, akin to goal-conditioned policies in reinforcement learning. We show that the pre-trained OC-GFN model can allow for a direct extraction of a policy capable of sampling from any new reward functions in downstream tasks. Nonetheless, adapting OC-GFN on a downstream task-specific reward involves an intractable marginalization over possible outcomes. We propose a novel way to approximate this marginalization by learning an amortized predictor enabling efficient fine-tuning. Extensive experimental results validate the efficacy of our approach, demonstrating the effectiveness of pre-training the OC-GFN, and its ability to swiftly adapt to downstream tasks and discover modes more efficiently. This work may serve as a foundation for further exploration of pre-training strategies in the context of GFlowNets.

Privacy and Byzantine resilience (BR) are two crucial requirements of modern-day distributed machine learning. The two concepts have been extensively studied individually but the question of how to combine them effectively remains unanswered. This paper contributes to addressing this question by studying the extent to which the distributed SGD algorithm, in the standard parameter-server architecture, can learn an accurate model despite (a) a fraction of the workers being malicious (Byzantine), and (b) the other fraction, whilst being honest, providing noisy information to the server to ensure differential privacy (DP). We first observe that the integration of standard practices in DP and BR is not straightforward. In fact, we show that many existing results on the convergence of distributed SGD under Byzantine faults, especially those relying on $(\alpha,f)$-Byzantine resilience, are rendered invalid when honest workers enforce DP. To circumvent this shortcoming, we revisit the theory of $(\alpha,f)$-BR to obtain an approximate convergence guarantee. Our analysis provides key insights on how to improve this guarantee through hyperparameter optimization. Essentially, our theoretical and empirical results show that (1) an imprudent combination of standard approaches to DP and BR might be fruitless, but (2) by carefully re-tuning the learning algorithm, we can obtain reasonable learning accuracy while simultaneously guaranteeing DP and BR.

Today the LHC offline computing relies heavily on CPU resources, despite the interest in compute accelerators, such as GPUs, for the longer term future. The number of cores per CPU socket has continued to increase steadily, reaching the levels of 64 cores (128 threads) with recent AMD EPYC processors, and 128 cores on Ampere Altra Max ARM processors. Over the course of the past decade, the CMS data processing framework, CMSSW, has been transformed from a single-threaded framework into a highly concurrent one. The first multithreaded version was brought into production by the start of the LHC Run 2 in 2015. Since then, the framework's threading efficiency has gradually been improved by adding more levels of concurrency and reducing the amount of serial code paths. The latest addition was support for concurrent Runs. In this work we review the concurrency model of the CMSSW, and measure its scalability with real CMS applications, such as simulation and reconstruction, on mode rn many-core machines. We show metrics such as event processing throughput and application memory usage with and without the contribution of I/O, as I/O has been the major scaling limitation for the CMS applications.

Images degraded by geometric distortions pose a significant challenge to imaging and computer vision tasks such as object recognition. Deep learning-based imaging models usually fail to give accurate performance for geometrically distorted images. In this paper, we propose the deformation-invariant neural network (DINN), a framework to address the problem of imaging tasks for geometrically distorted images. The DINN outputs consistent latent features for images that are geometrically distorted but represent the same underlying object or scene. The idea of DINN is to incorporate a simple component, called the quasiconformal transformer network (QCTN), into other existing deep networks for imaging tasks. The QCTN is a deep neural network that outputs a quasiconformal map, which can be used to transform a geometrically distorted image into an improved version that is closer to the distribution of natural or good images. It first outputs a Beltrami coefficient, which measures the quasiconformality of the output deformation map. By controlling the Beltrami coefficient, the local geometric distortion under the quasiconformal mapping can be controlled. The QCTN is lightweight and simple, which can be readily integrated into other existing deep neural networks to enhance their performance. Leveraging our framework, we have developed an image classification network that achieves accurate classification of distorted images. Our proposed framework has been applied to restore geometrically distorted images by atmospheric turbulence and water turbulence. DINN outperforms existing GAN-based restoration methods under these scenarios, demonstrating the effectiveness of the proposed framework. Additionally, we apply our proposed framework to the 1-1 verification of human face images under atmospheric turbulence and achieve satisfactory performance, further demonstrating the efficacy of our approach.

Training unsupervised speech recognition systems presents challenges due to GAN-associated instability, misalignment between speech and text, and significant memory demands. To tackle these challenges, we introduce a novel ASR system, ESPUM. This system harnesses the power of lower-order N-skipgrams (up to N=3) combined with positional unigram statistics gathered from a small batch of samples. Evaluated on the TIMIT benchmark, our model showcases competitive performance in ASR and phoneme segmentation tasks. Access our publicly available code at //github.com/lwang114/GraphUnsupASR.

Deep neural networks (DNN) usually come with a significant computational burden. While approaches such as structured pruning and mobile-specific DNNs have been proposed, they incur drastic accuracy loss. In this paper we leverage the intrinsic redundancy in latent representations to reduce the computational load with limited loss in performance. We show that semantically similar inputs share many filters, especially in the earlier layers. Thus, semantically similar classes can be clustered to create cluster-specific subgraphs. To this end, we propose a new framework called Semantic Inference (SINF). In short, SINF (i) identifies the semantic cluster the object belongs to using a small additional classifier and (ii) executes the subgraph extracted from the base DNN related to that semantic cluster for inference. To extract each cluster-specific subgraph, we propose a new approach named Discriminative Capability Score (DCS) that finds the subgraph with the capability to discriminate among the members of a specific semantic cluster. DCS is independent from SINF and can be applied to any DNN. We benchmark the performance of DCS on the VGG16, VGG19, and ResNet50 DNNs trained on the CIFAR100 dataset against 6 state-of-the-art pruning approaches. Our results show that (i) SINF reduces the inference time of VGG19, VGG16, and ResNet50 respectively by up to 35%, 29% and 15% with only 0.17%, 3.75%, and 6.75% accuracy loss (ii) DCS achieves respectively up to 3.65%, 4.25%, and 2.36% better accuracy with VGG16, VGG19, and ResNet50 with respect to existing discriminative scores (iii) when used as a pruning criterion, DCS achieves up to 8.13% accuracy gain with 5.82% less parameters than the existing state of the art work published at ICLR 2023 (iv) when considering per-cluster accuracy, SINF performs on average 5.73%, 8.38% and 6.36% better than the base VGG16, VGG19, and ResNet50.

Given a set of points of interest, a volumetric spanner is a subset of the points using which all the points can be expressed using "small" coefficients (measured in an appropriate norm). Formally, given a set of vectors $X = \{v_1, v_2, \dots, v_n\}$, the goal is to find $T \subseteq [n]$ such that every $v \in X$ can be expressed as $\sum_{i\in T} \alpha_i v_i$, with $\|\alpha\|$ being small. This notion, which has also been referred to as a well-conditioned basis, has found several applications, including bandit linear optimization, determinant maximization, and matrix low rank approximation. In this paper, we give almost optimal bounds on the size of volumetric spanners for all $\ell_p$ norms, and show that they can be constructed using a simple local search procedure. We then show the applications of our result to other tasks and in particular the problem of finding coresets for the Minimum Volume Enclosing Ellipsoid (MVEE) problem.

Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

北京阿比特科技有限公司