亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A countable structure is indivisible if for every coloring with finite range there is a monochromatic isomorphic subcopy of the structure. Each indivisible structure $\mathcal{S}$ naturally corresponds to an indivisibility problem $\mathsf{Ind}\ \mathcal{S}$, which outputs such a subcopy given a presentation and coloring. We investigate the Weihrauch complexity of the indivisibility problems for two structures: the rational numbers $\mathbb{Q}$ as a linear order, and the equivalence relation $\mathscr{E}$ with countably many equivalence classes each having countably many members. We separate the Weihrauch degrees of both $\mathsf{Ind}\ \mathbb{Q}$ and $\mathsf{Ind}\ \mathscr{E}$ from several benchmark problems, showing in particular that $\mathsf{C}_\mathbb{N} \vert_\mathrm{W} \mathsf{Ind}\ \mathbb{Q}$ and hence $\mathsf{Ind}\ \mathbb{Q}$ is strictly weaker than the problem of finding an interval in which some color is dense for a given coloring of $\mathbb{Q}$; and that the Weihrauch degree of $\mathsf{Ind}\ \mathscr{E}_k$ is strictly between those of $\mathsf{SRT}^2_k$ and $\mathsf{RT}^2_k$, where $\mathsf{Ind}\ \mathcal{S}_k$ is the restriction of $\mathsf{Ind}\ \mathcal{S}$ to $k$-colorings.

相關內容

Solving high dimensional partial differential equations (PDEs) has historically posed a considerable challenge when utilizing conventional numerical methods, such as those involving domain meshes. Recent advancements in the field have seen the emergence of neural PDE solvers, leveraging deep networks to effectively tackle high dimensional PDE problems. This study introduces Inf-SupNet, a model-based unsupervised learning approach designed to acquire solutions for a specific category of elliptic PDEs. The fundamental concept behind Inf-SupNet involves incorporating the inf-sup formulation of the underlying PDE into the loss function. The analysis reveals that the global solution error can be bounded by the sum of three distinct errors: the numerical integration error, the duality gap of the loss function (training error), and the neural network approximation error for functions within Sobolev spaces. To validate the efficacy of the proposed method, numerical experiments conducted in high dimensions demonstrate its stability and accuracy across various boundary conditions, as well as for both semi-linear and nonlinear PDEs.

Partial differential equations (PDEs) have become an essential tool for modeling complex physical systems. Such equations are typically solved numerically via mesh-based methods, such as finite element methods, with solutions over the spatial domain. However, obtaining these solutions are often prohibitively costly, limiting the feasibility of exploring parameters in PDEs. In this paper, we propose an efficient emulator that simultaneously predicts the solutions over the spatial domain, with theoretical justification of its uncertainty quantification. The novelty of the proposed method lies in the incorporation of the mesh node coordinates into the statistical model. In particular, the proposed method segments the mesh nodes into multiple clusters via a Dirichlet process prior and fits Gaussian process models with the same hyperparameters in each of them. Most importantly, by revealing the underlying clustering structures, the proposed method can provide valuable insights into qualitative features of the resulting dynamics that can be used to guide further investigations. Real examples are demonstrated to show that our proposed method has smaller prediction errors than its main competitors, with competitive computation time, and identifies interesting clusters of mesh nodes that possess physical significance, such as satisfying boundary conditions. An R package for the proposed methodology is provided in an open repository.

Forecasts for key macroeconomic variables are almost always made simultaneously by the same organizations, presented together, and used together in policy analyses and decision-makings. It is therefore important to know whether the forecasters are skillful enough to forecast the future values of those variables. Here a method for joint evaluation of skill in directional forecasts of multiple variables is introduced. The method is simple to use and does not rely on complicated assumptions required by the conventional statistical methods for measuring accuracy of directional forecast. The data on GDP growth and inflation forecasts of three organizations from Thailand, namely, the Bank of Thailand, the Fiscal Policy Office, and the Office of the National Economic and Social Development Council as well as the actual data on GDP growth and inflation of Thailand between 2001 and 2021 are employed in order to demonstrate how the method could be used to evaluate the skills of forecasters in practice. The overall results indicate that these three organizations are somewhat skillful in forecasting the direction-of-changes of GDP growth and inflation when no band and a band of +/- 1 standard deviation of the forecasted outcome are considered. However, when a band of +/- 0.5% of the forecasted outcome is introduced, the skills in forecasting the direction-of-changes of GDP growth and inflation of these three organizations are, at best, little better than intelligent guess work.

Neural operators (NO) are discretization invariant deep learning methods with functional output and can approximate any continuous operator. NO have demonstrated the superiority of solving partial differential equations (PDEs) over other deep learning methods. However, the spatial domain of its input function needs to be identical to its output, which limits its applicability. For instance, the widely used Fourier neural operator (FNO) fails to approximate the operator that maps the boundary condition to the PDE solution. To address this issue, we propose a novel framework called resolution-invariant deep operator (RDO) that decouples the spatial domain of the input and output. RDO is motivated by the Deep operator network (DeepONet) and it does not require retraining the network when the input/output is changed compared with DeepONet. RDO takes functional input and its output is also functional so that it keeps the resolution invariant property of NO. It can also resolve PDEs with complex geometries whereas NO fail. Various numerical experiments demonstrate the advantage of our method over DeepONet and FNO.

A central challenge in the verification of quantum computers is benchmarking their performance as a whole and demonstrating their computational capabilities. In this work, we find a universal model of quantum computation, Bell sampling, that can be used for both of those tasks and thus provides an ideal stepping stone towards fault-tolerance. In Bell sampling, we measure two copies of a state prepared by a quantum circuit in the transversal Bell basis. We show that the Bell samples are classically intractable to produce and at the same time constitute what we call a circuit shadow: from the Bell samples we can efficiently extract information about the quantum circuit preparing the state, as well as diagnose circuit errors. In addition to known properties that can be efficiently extracted from Bell samples, we give two new and efficient protocols, a test for the depth of the circuit and an algorithm to estimate a lower bound to the number of T gates in the circuit. With some additional measurements, our algorithm learns a full description of states prepared by circuits with low T-count.

The human cerebral cortex has many bumps and grooves called gyri and sulci. Even though there is a high inter-individual consistency for the main cortical folds, this is not the case when we examine the exact shapes and details of the folding patterns. Because of this complexity, characterizing the cortical folding variability and relating them to subjects' behavioral characteristics or pathologies is still an open scientific problem. Classical approaches include labeling a few specific patterns, either manually or semi-automatically, based on geometric distances, but the recent availability of MRI image datasets of tens of thousands of subjects makes modern deep-learning techniques particularly attractive. Here, we build a self-supervised deep-learning model to detect folding patterns in the cingulate region. We train a contrastive self-supervised model (SimCLR) on both Human Connectome Project (1101 subjects) and UKBioBank (21070 subjects) datasets with topological-based augmentations on the cortical skeletons, which are topological objects that capture the shape of the folds. We explore several backbone architectures (convolutional network, DenseNet, and PointNet) for the SimCLR. For evaluation and testing, we perform a linear classification task on a database manually labeled for the presence of the "double-parallel" folding pattern in the cingulate region, which is related to schizophrenia characteristics. The best model, giving a test AUC of 0.76, is a convolutional network with 6 layers, a 10-dimensional latent space, a linear projection head, and using the branch-clipping augmentation. This is the first time that a self-supervised deep learning model has been applied to cortical skeletons on such a large dataset and quantitatively evaluated. We can now envisage the next step: applying it to other brain regions to detect other biomarkers.

The {\em acyclic chromatic number} of a graph is the least number of colors needed to properly color its vertices so that none of its cycles has only two colors. The {\em acyclic chromatic index} is the analogous graph parameter for edge colorings. We first show that the acyclic chromatic index is at most $2\Delta-1$, where $\Delta$ is the maximum degree of the graph. We then show that for all $\epsilon >0$ and for $\Delta$ large enough (depending on $\epsilon$), the acyclic chromatic number of the graph is at most $\lceil(4^{-1/3} +\epsilon) {\Delta}^{4/3} \rceil +\Delta+ 1$. Both results improve long chains of previous successive advances. Both are algorithmic, in the sense that the colorings are generated by randomized algorithms. Previous randomized algorithms assume the availability of enough colors to guarantee properness deterministically and use additional colors in dealing with the bichromatic cycles in a randomized fashion. In contrast, our algorithm initially generates colorings that are not necessarily proper; it only aims at avoiding cycles where all pairs of edges, or vertices, that are one edge, or vertex, apart in a traversal of the cycle are homochromatic (of the same color). When this goal is reached, the algorithm checks for properness and if necessary it repeats until properness is attained. Thus savings in the number of colors is attained.

In statistical inference, retrodiction is the act of inferring potential causes in the past based on knowledge of the effects in the present and the dynamics leading to the present. Retrodiction is applicable even when the dynamics is not reversible, and it agrees with the reverse dynamics when it exists, so that retrodiction may be viewed as an extension of inversion, i.e., time-reversal. Recently, an axiomatic definition of retrodiction has been made in a way that is applicable to both classical and quantum probability using ideas from category theory. Almost simultaneously, a framework for information flow in in terms of semicartesian categories has been proposed in the setting of categorical probability theory. Here, we formulate a general definition of retrodiction to add to the information flow axioms in semicartesian categories, thus providing an abstract framework for retrodiction beyond classical and quantum probability theory. More precisely, we extend Bayesian inference, and more generally Jeffrey's probability kinematics, to arbitrary semicartesian categories.

We consider a general multivariate model where univariate marginal distributions are known up to a parameter vector and we are interested in estimating that parameter vector without specifying the joint distribution, except for the marginals. If we assume independence between the marginals and maximize the resulting quasi-likelihood, we obtain a consistent but inefficient QMLE estimator. If we assume a parametric copula (other than independence) we obtain a full MLE, which is efficient but only under a correct copula specification and may be biased if the copula is misspecified. Instead we propose a sieve MLE estimator (SMLE) which improves over QMLE but does not have the drawbacks of full MLE. We model the unknown part of the joint distribution using the Bernstein-Kantorovich polynomial copula and assess the resulting improvement over QMLE and over misspecified FMLE in terms of relative efficiency and robustness. We derive the asymptotic distribution of the new estimator and show that it reaches the relevant semiparametric efficiency bound. Simulations suggest that the sieve MLE can be almost as efficient as FMLE relative to QMLE provided there is enough dependence between the marginals. We demonstrate practical value of the new estimator with several applications. First, we apply SMLE in an insurance context where we build a flexible semi-parametric claim loss model for a scenario where one of the variables is censored. As in simulations, the use of SMLE leads to tighter parameter estimates. Next, we consider financial risk management examples and show how the use of SMLE leads to superior Value-at-Risk predictions. The paper comes with an online archive which contains all codes and datasets.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

北京阿比特科技有限公司