亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We provide the first perceptual quantification of user's sensitivity to radial optic flow artifacts and demonstrate a promising approach for masking this optic flow artifact via blink suppression. Near-eye HMDs allow users to feel immersed in virtual environments by providing visual cues, like motion parallax and stereoscopy, that mimic how we view the physical world. However, these systems exhibit a variety of perceptual artifacts that can limit their usability and the user's sense of presence in VR. One well-known artifact is the vergence-accommodation conflict (VAC). Varifocal displays can mitigate VAC, but bring with them other artifacts such as a change in virtual image size (radial optic flow) when the focal plane changes. We conducted a set of psychophysical studies to measure users' ability to perceive this radial flow artifact before, during, and after self-initiated blinks. Our results showed that visual sensitivity was reduced by a factor of 10 at the start and for ~70 ms after a blink was detected. Pre- and post-blink sensitivity was, on average, ~0.15% image size change during normal viewing and increased to ~1.5-2.0% during blinks. Our results imply that a rapid (under 70 ms) radial optic flow distortion can go unnoticed during a blink. Furthermore, our results provide empirical data that can be used to inform engineering requirements for both hardware design and software-based graphical correction algorithms for future varifocal near-eye displays. Our project website is available at //gamma.umd.edu/RoF/.

相關內容

In line with the latest research, the task of identifying helpful reviews from a vast pool of user-generated textual and visual data has become a prominent area of study. Effective modal representations are expected to possess two key attributes: consistency and differentiation. Current methods designed for Multimodal Review Helpfulness Prediction (MRHP) face limitations in capturing distinctive information due to their reliance on uniform multimodal annotation. The process of adding varied multimodal annotations is not only time-consuming but also labor-intensive. To tackle these challenges, we propose an auto-generated scheme based on multi-task learning to generate pseudo labels. This approach allows us to simultaneously train for the global multimodal interaction task and the separate cross-modal interaction subtasks, enabling us to learn and leverage both consistency and differentiation effectively. Subsequently, experimental results validate the effectiveness of pseudo labels, and our approach surpasses previous textual and multimodal baseline models on two widely accessible benchmark datasets, providing a solution to the MRHP problem.

We explore a spectral initialization method that plays a central role in contemporary research on signal estimation in nonconvex scenarios. In a noiseless phase retrieval framework, we precisely analyze the method's performance in the high-dimensional limit when sensing vectors follow a multivariate Gaussian distribution for two rotationally invariant models of the covariance matrix C. In the first model C is a projector on a lower dimensional space while in the second it is a Wishart matrix. Our analytical results extend the well-established case when C is the identity matrix. Our examination shows that the introduction of biased spatial directions leads to a substantial improvement in the spectral method's effectiveness, particularly when the number of measurements is less than the signal's dimension. This extension also consistently reveals a phase transition phenomenon dependent on the ratio between sample size and signal dimension. Surprisingly, both of these models share the same threshold value.

We propose a data-driven control method for systems with aleatoric uncertainty, for example, robot fleets with variations between agents. Our method leverages shared trajectory data to increase the robustness of the designed controller and thus facilitate transfer to new variations without the need for prior parameter and uncertainty estimations. In contrast to existing work on experience transfer for performance, our approach focuses on robustness and uses data collected from multiple realizations to guarantee generalization to unseen ones. Our method is based on scenario optimization combined with recent formulations for direct data-driven control. We derive lower bounds on the amount of data required to achieve quadratic stability for probabilistic systems with aleatoric uncertainty and demonstrate the benefits of our data-driven method through a numerical example. We find that the learned controllers generalize well to high variations in the dynamics even when based on only a few short open-loop trajectories. Robust experience transfer enables the design of safe and robust controllers that work out of the box without any additional learning during deployment.

Recommendation systems, as widely implemented nowadays on various platforms, recommend relevant items to users based on their preferences. The classical methods which rely on user-item interaction matrices has limitations, especially in scenarios where there is a lack of interaction data for new items. Knowledge graph (KG)-based recommendation systems have emerged as a promising solution. However, most KG-based methods adopt node embeddings, which do not provide personalized recommendations for different users and cannot generalize well to the new items. To address these limitations, we propose Knowledge-enhanced User-Centric subgraph Network (KUCNet), a subgraph learning approach with graph neural network (GNN) for effective recommendation. KUCNet constructs a U-I subgraph for each user-item pair that captures both the historical information of user-item interactions and the side information provided in KG. An attention-based GNN is designed to encode the U-I subgraphs for recommendation. Considering efficiency, the pruned user-centric computation graph is further introduced such that multiple U-I subgraphs can be simultaneously computed and that the size can be pruned by Personalized PageRank. Our proposed method achieves accurate, efficient, and interpretable recommendations especially for new items. Experimental results demonstrate the superiority of KUCNet over state-of-the-art KG-based and collaborative filtering (CF)-based methods.

NSFW (Not Safe for Work) content, in the context of a dialogue, can have severe side effects on users in open-domain dialogue systems. However, research on detecting NSFW language, especially sexually explicit content, within a dialogue context has significantly lagged behind. To address this issue, we introduce CensorChat, a dialogue monitoring dataset aimed at NSFW dialogue detection. Leveraging knowledge distillation techniques involving GPT-4 and ChatGPT, this dataset offers a cost-effective means of constructing NSFW content detectors. The process entails collecting real-life human-machine interaction data and breaking it down into single utterances and single-turn dialogues, with the chatbot delivering the final utterance. ChatGPT is employed to annotate unlabeled data, serving as a training set. Rationale validation and test sets are constructed using ChatGPT and GPT-4 as annotators, with a self-criticism strategy for resolving discrepancies in labeling. A BERT model is fine-tuned as a text classifier on pseudo-labeled data, and its performance is assessed. The study emphasizes the importance of AI systems prioritizing user safety and well-being in digital conversations while respecting freedom of expression. The proposed approach not only advances NSFW content detection but also aligns with evolving user protection needs in AI-driven dialogues.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司