We present DeepCSI, a novel approach to Wi-Fi radio fingerprinting (RFP) which leverages standard-compliant beamforming feedback matrices to authenticate MU-MIMO Wi-Fi devices on the move. By capturing unique imperfections in off-the-shelf radio circuitry, RFP techniques can identify wireless devices directly at the physical layer, allowing low-latency low-energy cryptography-free authentication. However, existing Wi-Fi RFP techniques are based on software-defined radio (SDRs), which may ultimately prevent their widespread adoption. Moreover, it is unclear whether existing strategies can work in the presence of MU-MIMO transmitters - a key technology in modern Wi-Fi standards. Conversely from prior work, DeepCSI does not require SDR technologies and can be run on any low-cost Wi-Fi device to authenticate MU-MIMO transmitters. Our key intuition is that imperfections in the transmitter's radio circuitry percolate onto the beamforming feedback matrix, and thus RFP can be performed without explicit channel state information (CSI) computation. DeepCSI is robust to inter-stream and inter-user interference being the beamforming feedback not affected by those phenomena. We extensively evaluate the performance of DeepCSI through a massive data collection campaign performed in the wild with off-the-shelf equipment, where 10 MU-MIMO Wi-Fi radios emit signals in different positions. Experimental results indicate that DeepCSI correctly identifies the transmitter with an accuracy of up to 98%. The identification accuracy remains above 82% when the device moves within the environment. To allow replicability and provide a performance benchmark, we pledge to share the 800 GB datasets - collected in static and, for the first time, dynamic conditions - and the code database with the community.
Modern vehicles rely on a fleet of electronic control units (ECUs) connected through controller area network (CAN) buses for critical vehicular control. However, with the expansion of advanced connectivity features in automobiles and the elevated risks of internal system exposure, the CAN bus is increasingly prone to intrusions and injection attacks. The ordinary injection attacks disrupt the typical timing properties of the CAN data stream, and the rule-based intrusion detection systems (IDS) can easily detect them. However, advanced attackers can inject false data to the time series sensory data (signal), while looking innocuous by the pattern/frequency of the CAN messages. Such attacks can bypass the rule-based IDS or any anomaly-based IDS built on binary payload data. To make the vehicles robust against such intelligent attacks, we propose CANShield, a signal-based intrusion detection framework for the CAN bus. CANShield consists of three modules: a data preprocessing module that handles the high-dimensional CAN data stream at the signal level and makes them suitable for a deep learning model; a data analyzer module consisting of multiple deep autoencoder (AE) networks, each analyzing the time-series data from a different temporal perspective; and finally an attack detection module that uses an ensemble method to make the final decision. Evaluation results on two high-fidelity signal-based CAN attack datasets show the high accuracy and responsiveness of CANShield in detecting wide-range of advanced intrusion attacks.
We introduce a new type of Krasnoselskii's result. Using a simple differentiability condition, we relax the nonexpansive condition in Krasnoselskii's theorem. More clearly, we analyze the convergence of the sequence $x_{n+1}=\frac{x_n+g(x_n)}{2}$ based on some differentiability condition of $g$ and present some fixed point results. We introduce some iterative sequences that for any real differentiable function $g$ and any starting point $x_0\in \mathbb [a,b]$ converge monotonically to the nearest root of $g$ in $[a,b]$ that lay to the right or left side of $x_0$. Based on this approach, we present an efficient and novel method for finding the real roots of real functions. We prove that no root will be missed in our method. It is worth mentioning that our iterative method is free from the derivative evaluation which can be regarded as an advantage of this method in comparison with many other methods. Finally, we illustrate our results with some numerical examples.
The COVID-19 pandemic has so far accounted for reported 5.5M deaths worldwide, with 8.7% of these coming from India. The pandemic exacerbated the weakness of the Indian healthcare system. As of January 20, 2022, India is the second worst affected country with 38.2M reported cases and 487K deaths. According to epidemiologists, vaccines are an essential tool to prevent the spread of the pandemic. India's vaccination drive began on January 16, 2021 with governmental policies being introduced to prioritize different populations of the society. Through the course of the vaccination drive, multiple new policies were also introduced to ensure that vaccines are readily available and vaccination coverage is increased. However, at the same time, some of the government policies introduced led to unintended inequities in the populations being targeted. In this report, we enumerate and analyze the inequities that existed in India's vaccination policy drive, and also compute the effect of the new policies that were introduced. We analyze these potential inequities not only qualitatively but also quantitatively by leveraging the data that was made available through the government portals. Specifically, (a) we discover inequities that might exist in the policies, (b) we quantify the effect of new policies introduced to increase vaccination coverage, and (c) we also point the data discrepancies that exist across different data sources.
Online volunteers are an uncompensated yet valuable labor force for many social platforms. For example, volunteer content moderators perform a vast amount of labor to maintain online communities. However, as social platforms like Reddit favor revenue generation and user engagement, moderators are under-supported to manage the expansion of online communities. To preserve these online communities, developers and researchers of social platforms must account for and support as much of this labor as possible. In this paper, we quantitatively characterize the publicly visible and invisible actions taken by moderators on Reddit, using a unique dataset of private moderator logs for 126 subreddits and over 900 moderators. Our analysis of this dataset reveals the heterogeneity of moderation work across both communities and moderators. Moreover, we find that analyzing only visible work - the dominant way that moderation work has been studied thus far - drastically underestimates the amount of human moderation labor on a subreddit. We discuss the implications of our results on content moderation research and social platforms.
Wireless communications systems are impacted by multi-path fading and Doppler shift in dynamic environments, where the channel becomes doubly-dispersive and its estimation becomes an arduous task. Only a few pilots are used for channel estimation in conventional approaches to preserve high data rate transmission. Consequently, such estimators experience a significant performance degradation in high mobility scenarios. Recently, deep learning has been employed for doubly-dispersive channel estimation due to its low-complexity, robustness, and good generalization ability. Against this backdrop, the current paper presents a comprehensive survey on channel estimation techniques based on deep learning by deeply investigating different methods. The study also provides extensive experimental simulations followed by a computational complexity analysis. After considering different parameters such as modulation order, mobility, frame length, and deep learning architecture, the performance of the studied estimators is evaluated in several mobility scenarios. In addition, the source codes are made available online in order to make the results reproducible.
In this paper, we obtain asymptotic expressions for the ergodic capacity of the keyhole multiple-input multiple-output (MIMO) channel at low signal-to-noise ratio (SNR) in independent and identically distributed Nakagami-$m$ fading conditions with perfect channel state information at the transmitter and receiver. We show that the low-SNR capacity of this keyhole MIMO channel scales proportionally as $\frac{\textrm{SNR}}{4} \log^2 \left(1/{\textrm{SNR}}\right)$. Our main contribution is to identify a surprising result that the low-SNR capacity of the MIMO fading channel increases in the presence of keyhole degenerate condition, which is in direct contrast to the well-known MIMO capacity degradation at high SNR under keyhole conditions. To explain why rank-deficient keyhole fading channel outperforms the full-rank MIMO fading channel at sufficiently low-SNR, we remark that the rank of the MIMO channel matrix has no impact in the low-SNR regime and that the double-faded (or double-scattering) nature of the keyhole MIMO channel creates more opportunistic communications at low-SNR when compared with pure MIMO fading channel which leads to increased capacity. Finally, we also show that a simple one-bit channel information based on-off power control achieves this low-SNR capacity; surprisingly, this power adaptation is robust against both moderate and severe fading for a wide range of low SNR values. These results also hold for the keyhole MIMO Rayleigh channel as a special case.
The study of user interest models has received a great deal of attention in click through rate (CTR) prediction recently. These models aim at capturing user interest from different perspectives, including user interest evolution, session interest, multiple interests, etc. In this paper, we focus on a new type of user interest, i.e., user retargeting interest. User retargeting interest is defined as user's click interest on target items the same as or similar to historical click items. We propose a novel soft retargeting network (SRN) to model this specific interest. Specifically, we first calculate the similarity between target item and each historical item with the help of graph embedding. Then we learn to aggregate the similarity weights to measure the extent of user's click interest on target item. Furthermore, we model the evolution of user retargeting interest. Experimental results on public datasets and industrial dataset demonstrate that our model achieves significant improvements over state-of-the-art models.
Rate splitting (RS) systems can better deal with imperfect channel state information at the transmitter (CSIT) than conventional approaches. However, this requires an appropriate power allocation that often has a high computational complexity, which might be inadequate for practical and large systems. To this end, adaptive power allocation techniques can provide good performance with low computational cost. This work presents novel robust and adaptive power allocation technique for RS-based multiuser multiple-input multiple-output (MU-MIMO) systems. In particular, we develop a robust adaptive power allocation based on stochastic gradient learning and the minimization of the mean-square error between the transmitted symbols of the RS system and the received signal. The proposed robust power allocation strategy incorporates knowledge of the variance of the channel errors to deal with imperfect CSIT and adjust power levels in the presence of uncertainty. An analysis of the convexity and stability of the proposed power allocation algorithms is provided, together with a study of their computational complexity and theoretical bounds relating the power allocation strategies. Numerical results show that the sum-rate of an RS system with adaptive power allocation outperforms RS and conventional MU-MIMO systems under imperfect CSIT. %\vspace{-0.75em}
Collision avoidance for multirobot systems is a well-studied problem. Recently, control barrier functions (CBFs) have been proposed for synthesizing controllers that guarantee collision avoidance and goal stabilization for multiple robots. However, it has been noted that reactive control synthesis methods (such as CBFs) are prone to \textit{deadlock}, an equilibrium of system dynamics that causes the robots to stall before reaching their goals. In this paper, we analyze the closed-loop dynamics of robots using CBFs, to characterize controller parameters, initial conditions, and goal locations that invariably lead the system to deadlock. Using tools from duality theory, we derive geometric properties of robot configurations of an $N$ robot system once it is in deadlock and we justify them using the mechanics interpretation of KKT conditions. Our key deductions are that 1) system deadlock is characterized by a force-equilibrium on robots and 2) deadlock occurs to ensure safety when safety is on the brink of being violated. These deductions allow us to interpret deadlock as a subset of the state space, and we show that this set is non-empty and located on the boundary of the safe set. By exploiting these properties, we analyze the number of admissible robot configurations in deadlock and develop a provably-correct decentralized algorithm for deadlock resolution to safely deliver the robots to their goals. This algorithm is validated in simulations as well as experimentally on Khepera-IV robots.
For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis, which shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERT_BASE can be comparable with BERT_LARGE, where both the latter models are trained via the standard training procedures as in the literature.