Testing is an important aspect of software development, but unfortunately, it is often neglected. While test quality analyses such as code coverage or mutation analysis inform developers about the quality of their tests, such reports are viewed only sporadically during continuous integration or code review, if they are considered at all, and their impact on the developers' testing behavior therefore tends to be negligible. To actually influence developer behavior, it may rather be necessary to motivate developers directly within their programming environment, while they are coding. We introduce IntelliGame, a gamified plugin for the popular IntelliJ Java Integrated Development Environment, which rewards developers for positive testing behavior using a multi-level achievement system: A total of 27 different achievements, each with incremental levels, provide affirming feedback when developers exhibit commendable testing behavior, and provide an incentive to further continue and improve this behavior. A controlled experiment with 49 participants given a Java programming task reveals substantial differences in the testing behavior triggered by IntelliGame: Incentivized developers write more tests, achieve higher coverage and mutation scores, run their tests more often, and achieve functionality earlier.
Exploration bonuses in reinforcement learning guide long-horizon exploration by defining custom intrinsic objectives. Several exploration objectives like count-based bonuses, pseudo-counts, and state-entropy maximization are non-stationary and hence are difficult to optimize for the agent. While this issue is generally known, it is usually omitted and solutions remain under-explored. The key contribution of our work lies in transforming the original non-stationary rewards into stationary rewards through an augmented state representation. For this purpose, we introduce the Stationary Objectives For Exploration (SOFE) framework. SOFE requires identifying sufficient statistics for different exploration bonuses and finding an efficient encoding of these statistics to use as input to a deep network. SOFE is based on proposing state augmentations that expand the state space but hold the promise of simplifying the optimization of the agent's objective. We show that SOFE improves the performance of several exploration objectives, including count-based bonuses, pseudo-counts, and state-entropy maximization. Moreover, SOFE outperforms prior methods that attempt to stabilize the optimization of intrinsic objectives. We demonstrate the efficacy of SOFE in hard-exploration problems, including sparse-reward tasks, pixel-based observations, 3D navigation, and procedurally generated environments.
Deep learning based methods for medical images can be easily compromised by adversarial examples (AEs), posing a great security flaw in clinical decision-making. It has been discovered that conventional adversarial attacks like PGD which optimize the classification logits, are easy to distinguish in the feature space, resulting in accurate reactive defenses. To better understand this phenomenon and reassess the reliability of the reactive defenses for medical AEs, we thoroughly investigate the characteristic of conventional medical AEs. Specifically, we first theoretically prove that conventional adversarial attacks change the outputs by continuously optimizing vulnerable features in a fixed direction, thereby leading to outlier representations in the feature space. Then, a stress test is conducted to reveal the vulnerability of medical images, by comparing with natural images. Interestingly, this vulnerability is a double-edged sword, which can be exploited to hide AEs. We then propose a simple-yet-effective hierarchical feature constraint (HFC), a novel add-on to conventional white-box attacks, which assists to hide the adversarial feature in the target feature distribution. The proposed method is evaluated on three medical datasets, both 2D and 3D, with different modalities. The experimental results demonstrate the superiority of HFC, \emph{i.e.,} it bypasses an array of state-of-the-art adversarial medical AE detectors more efficiently than competing adaptive attacks, which reveals the deficiencies of medical reactive defense and allows to develop more robust defenses in future.
Autonomous systems are emerging in many application domains. With the recent advancements in artificial intelligence and machine learning, sensor technology, perception algorithms and robotics, scenarios previously requiring strong human involvement can be handled by autonomous systems. With the independence from human control, cybersecurity of such systems becomes even more critical as no human intervention in case of undesired behavior is possible. In this context, this paper discusses emerging security challenges in autonomous systems design which arise in many domains such as autonomous incident response, risk assessment, data availability, systems interaction, trustworthiness, updatability, access control, as well as the reliability and explainability of machine learning methods. In all these areas, this paper thoroughly discusses the state of the art, identifies emerging security challenges and proposes research directions to address these challenges for developing secure autonomous systems.
Semantic communication, recognized as a promising technology for future intelligent applications, has received widespread research attention. Despite the potential of semantic communication to enhance transmission reliability, especially in low signal-to-noise (SNR) environments, the critical issue of resource allocation and compatibility in the dynamic wireless environment remains largely unexplored. In this paper, we propose an adaptive semantic resource allocation paradigm with semantic-bit quantization (SBQ) compatibly for existing wireless communications, where the inaccurate environment perception introduced by the additional mapping relationship between semantic metrics and transmission metrics is solved. In order to investigate the performance of semantic communication networks, the quality of service for semantic communication (SC-QoS), including the semantic quantization efficiency (SQE) and transmission latency, is proposed for the first time. A problem of maximizing the overall effective SC-QoS is formulated by jointly optimizing the transmit beamforming of the base station, the bits for semantic representation, the subchannel assignment, and the bandwidth resource allocation. To address the non-convex formulated problem, an intelligent resource allocation scheme is proposed based on a hybrid deep reinforcement learning (DRL) algorithm, where the intelligent agent can perceive both semantic tasks and dynamic wireless environments. Simulation results demonstrate that our design can effectively combat semantic noise and achieve superior performance in wireless communications compared to several benchmark schemes. Furthermore, compared to mapping-guided paradigm based resource allocation schemes, our proposed adaptive scheme can achieve up to 13% performance improvement in terms of SC-QoS.
Robotic systems used in safety-critical industrial situations often rely on modular software architectures, and increasingly include autonomous components. Verifying that these modular robotic systems behave as expected requires approaches that can cope with, and preferably take advantage of, this inherent modularity. This paper describes a compositional approach to specifying the nodes in robotic systems built using the Robotic Operating System (ROS), where each node is specified using First-Order Logic (FOL) assume-guarantee contracts that link the specification to the ROS implementation. We introduce inference rules that facilitate the composition of these node-level contracts to derive system-level properties. We also present a novel Domain-Specific Language, the ROS Contract Language, which captures a node's FOL specification and links this contract to its implementation. RCL contracts can be automatically translated, by our tool Vanda, into executable monitors; which we use to verify the contracts at runtime. We illustrate our approach through the specification and verification of an autonomous rover engaged in the remote inspection of a nuclear site, and finish with smaller examples that illustrate other useful features of our framework.
This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.
Learning from a few examples remains a key challenge in machine learning. Despite recent advances in important domains such as vision and language, the standard supervised deep learning paradigm does not offer a satisfactory solution for learning new concepts rapidly from little data. In this work, we employ ideas from metric learning based on deep neural features and from recent advances that augment neural networks with external memories. Our framework learns a network that maps a small labelled support set and an unlabelled example to its label, obviating the need for fine-tuning to adapt to new class types. We then define one-shot learning problems on vision (using Omniglot, ImageNet) and language tasks. Our algorithm improves one-shot accuracy on ImageNet from 87.6% to 93.2% and from 88.0% to 93.8% on Omniglot compared to competing approaches. We also demonstrate the usefulness of the same model on language modeling by introducing a one-shot task on the Penn Treebank.