亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To alleviate the suboptimal performance of belief propagation (BP) decoding of short low-density parity-check (LDPC) codes, a plethora of improved decoding algorithms has been proposed over the last two decades. Many of these methods can be described using the same general framework, which we call ensemble decoding: A set of independent constituent decoders works in parallel on the received sequence, each proposing a codeword candidate. From this list, the maximum likelihood (ML) decision is designated as the decoder output. In this paper, we qualitatively and quantitatively compare different realizations of the ensemble decoder, namely multiple-bases belief propagation (MBBP), automorphism ensemble decoding (AED), scheduling ensemble decoding (SED), noise-aided ensemble decoding (NED) and saturated belief propagation (SBP). While all algorithms can provide gains over traditional BP decoding, ensemble methods that exploit the code structure, such as MBBP and AED, typically show greater performance improvements.

相關內容

Active imaging systems sample the Transient Light Transport Matrix (TLTM) for a scene by sequentially illuminating various positions in this scene using a controllable light source, and then measuring the resulting spatiotemporal light transport with time of flight (ToF) sensors. Time-resolved Non-line-of-sight (NLOS) imaging employs an active imaging system that measures part of the TLTM of an intermediary relay surface, and uses the indirect reflections of light encoded within this TLTM to "see around corners". Such imaging systems have applications in diverse areas such as disaster response, remote surveillance, and autonomous navigation. While existing NLOS imaging systems usually measure a subset of the full TLTM, development of customized gated Single Photon Avalanche Diode (SPAD) arrays \cite{riccardo_fast-gated_2022} has made it feasible to probe the full measurement space. In this work, we demonstrate that the full TLTM on the relay surface can be processed with efficient algorithms to computationally focus and detect our illumination in different parts of the hidden scene, turning the relay surface into a second-order active imaging system. These algorithms allow us to iterate on the measured, first-order TLTM, and extract a \textbf{second order TLTM for surfaces in the hidden scene}. We showcase three applications of TLTMs in NLOS imaging: (1) Scene Relighting with novel illumination, (2) Separation of direct and indirect components of light transport in the hidden scene, and (3) Dual Photography. Additionally, we empirically demonstrate that SPAD arrays enable parallel acquisition of photons, effectively mitigating long acquisition times.

The evaluation of image generators remains a challenge due to the limitations of traditional metrics in providing nuanced insights into specific image regions. This is a critical problem as not all regions of an image may be learned with similar ease. In this work, we propose a novel approach to disentangle the cosine similarity of mean embeddings into the product of cosine similarities for individual pixel clusters via central kernel alignment. Consequently, we can quantify the contribution of the cluster-wise performance to the overall image generation performance. We demonstrate how this enhances the explainability and the likelihood of identifying pixel regions of model misbehavior across various real-world use cases.

We introduce a new erasure decoder that applies to arbitrary quantum LDPC codes. Dubbed the cluster decoder, it generalizes the decomposition idea of Vertical-Horizontal (VH) decoding introduced by Connelly et al. in 2022. Like the VH decoder, the idea is to first run the peeling decoder and then post-process the resulting stopping set. The cluster decoder breaks the stopping set into a tree of clusters which can be solved sequentially via Gaussian Elimination (GE). By allowing clusters of unconstrained size, this decoder achieves maximum-likelihood (ML) performance with reduced complexity compared with full GE. When GE is applied only to clusters whose sizes are less than a constant, the performance is degraded but the complexity becomes linear in the block length. Our simulation results show that, for hypergraph product codes, the cluster decoder with constant cluster size achieves near-ML performance similar to VH decoding in the low-erasure-rate regime. For the general quantum LDPC codes we studied, the cluster decoder can be used to estimate the ML performance curve with reduced complexity over a wide range of erasure rates.

We introduce a novel, data-driven approach for reconstructing temporally coherent 3D motion from unstructured and potentially partial observations of non-rigidly deforming shapes. Our goal is to achieve high-fidelity motion reconstructions for shapes that undergo near-isometric deformations, such as humans wearing loose clothing. The key novelty of our work lies in its ability to combine implicit shape representations with explicit mesh-based deformation models, enabling detailed and temporally coherent motion reconstructions without relying on parametric shape models or decoupling shape and motion. Each frame is represented as a neural field decoded from a feature space where observations over time are fused, hence preserving geometric details present in the input data. Temporal coherence is enforced with a near-isometric deformation constraint between adjacent frames that applies to the underlying surface in the neural field. Our method outperforms state-of-the-art approaches, as demonstrated by its application to human and animal motion sequences reconstructed from monocular depth videos.

The integration of DNA methylation data with a Whole Slide Image (WSI) offers significant potential for enhancing the diagnostic precision of central nervous system (CNS) tumor classification in neuropathology. While existing approaches typically integrate encoded omic data with histology at either an early or late fusion stage, the potential of reintroducing omic data through dual fusion remains unexplored. In this paper, we propose the use of omic embeddings during early and late fusion to capture complementary information from local (patch-level) to global (slide-level) interactions, boosting performance through multimodal integration. In the early fusion stage, omic embeddings are projected onto WSI patches in latent-space, which generates embeddings that encapsulate per-patch molecular and morphological insights. This effectively incorporates omic information into the spatial representation of the WSI. These embeddings are then refined with a Multiple Instance Learning gated attention mechanism which attends to diagnostic patches. In the late fusion stage, we reintroduce the omic data by fusing it with slide-level omic-WSI embeddings using a Multimodal Outer Arithmetic Block (MOAB), which richly intermingles features from both modalities, capturing their correlations and complementarity. We demonstrate accurate CNS tumor subtyping across 20 fine-grained subtypes and validate our approach on benchmark datasets, achieving improved survival prediction on TCGA-BLCA and competitive performance on TCGA-BRCA compared to state-of-the-art methods. This dual fusion strategy enhances interpretability and classification performance, highlighting its potential for clinical diagnostics.

Despite recent advancements in deep learning, its application in real-world medical settings, such as phonocardiogram (PCG) classification, remains limited. A significant barrier is the lack of high-quality annotated datasets, which hampers the development of robust, generalizable models that can perform well on newly collected, out-of-distribution (OOD) data. Self-Supervised Learning (SSL) contrastive learning, has shown promise in mitigating the issue of data scarcity by using unlabeled data to enhance model robustness. Even though SSL methods have been proposed and researched in other domains, works focusing on the impact of data augmentations on model robustness for PCG classification are limited. In particular, while augmentations are a key component in SSL, selecting the most suitable policy during training is highly challenging. Improper augmentations can lead to substantial performance degradation and even hinder a network's ability to learn meaningful representations. Addressing this gap, our research aims to explore and evaluate a wide range of audio-based augmentations and uncover combinations that enhance SSL model performance in PCG classification. We conduct a comprehensive comparative analysis across multiple datasets, assessing the impact of various augmentations on model performance. Our findings reveal that depending on the training distribution, augmentation choice significantly influences model robustness, with fully-supervised models experiencing up to a 32\% drop in effectiveness when evaluated on unseen data, while SSL models demonstrate greater resilience, losing only 10\% or even improving in some cases. This study also highlights the most promising and appropriate augmentations for PCG signal processing, by calculating their effect size on training. These insights equip researchers with valuable guidelines for developing reliable models in PCG signal processing.

Not many tests exist for testing the equality for two or more multivariate distributions with compositional data, perhaps due to their constrained sample space. At the moment, there is only one test suggested that relies upon random projections. We propose a novel test termed {\alpha}-Energy Based Test ({\alpha}-EBT) to compare the multivariate distributions of two (or more) compositional data sets. Similar to the aforementioned test, the new test makes no parametric assumptions about the data and, based on simulation studies it exhibits higher power levels.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司