The Herman Protocol Conjecture states that the expected time $\mathbb{E}(\mathbf{T})$ of Herman's self-stabilizing algorithm in a system consisting of $N$ identical processes organized in a ring holding several tokens is at most $\frac{4}{27}N^{2}$. We prove the conjecture in its standard unbiased and also in a biased form for discrete processes, and extend the result to further variants where the tokens move via certain L\'evy processes. Moreover, we derive a bound on the expected value of $\mathbb{E}(\alpha^{\mathbf{T}})$ for all $1\leq \alpha\leq (1-\varepsilon)^{-1}$ with a specific $\varepsilon>0$. Subject to the correctness of an optimization result that can be demonstrated empirically, all these estimations attain their maximum on the initial state with three tokens distributed equidistantly on the ring of $N$ processes. Such a relation is the symptom of the fact that both $\mathbb{E}(\mathbf{T})$ and $\mathbb{E}(\alpha^{\mathbf{T}})$ are weighted sums of the probabilities $\mathbb{P}(\mathbf{T}\geq t)$.
Generalized approximate message passing (GAMP) is a computationally efficient algorithm for estimating an unknown signal \(w_0\in\mathbb{R}^N\) from a random linear measurement \(y= Xw_0 + \epsilon\in\mathbb{R}^M\), where \(X\in\mathbb{R}^{M\times N}\) is a known measurement matrix and \(\epsilon\) is the noise vector. The salient feature of GAMP is that it can provide an unbiased estimator \(\hat{r}^{\rm G}\sim\mathcal{N}(w_0, \hat{s}^2I_N)\), which can be used for various hypothesis-testing methods. In this study, we consider the bootstrap average of an unbiased estimator of GAMP for the elastic net. By numerically analyzing the state evolution of \emph{approximate message passing with resampling}, which has been proposed for computing bootstrap statistics of the elastic net estimator, we investigate when the bootstrap averaging reduces the variance of the unbiased estimator and the effect of optimizing the size of each bootstrap sample and hyperparameter of the elastic net regularization in the asymptotic setting \(M, N\to\infty, M/N\to\alpha\in(0,\infty)\). The results indicate that bootstrap averaging effectively reduces the variance of the unbiased estimator when the actual data generation process is inconsistent with the sparsity assumption of the regularization and the sample size is small. Furthermore, we find that when \(w_0\) is less sparse, and the data size is small, the system undergoes a phase transition. The phase transition indicates the existence of the region where the ensemble average of unbiased estimators of GAMP for the elastic net norm minimization problem yields the unbiased estimator with the minimum variance.
We show that independent and uniformly distributed sampling points are as good as optimal sampling points for the approximation of functions from the Sobolev space $W_p^s(\Omega)$ on bounded convex domains $\Omega\subset \mathbb{R}^d$ in the $L_q$-norm if $q<p$. More generally, we characterize the quality of arbitrary sampling points $P\subset \Omega$ via the $L_\gamma(\Omega)$-norm of the distance function $\rm{dist}(\cdot,P)$, where $\gamma=s(1/q-1/p)^{-1}$ if $q<p$ and $\gamma=\infty$ if $q\ge p$. This improves upon previous characterizations based on the covering radius of $P$.
QBF solvers implementing the QCDCL paradigm are powerful algorithms that successfully tackle many computationally complex applications. However, our theoretical understanding of the strength and limitations of these QCDCL solvers is very limited. In this paper we suggest to formally model QCDCL solvers as proof systems. We define different policies that can be used for decision heuristics and unit propagation and give rise to a number of sound and complete QBF proof systems (and hence new QCDCL algorithms). With respect to the standard policies used in practical QCDCL solving, we show that the corresponding QCDCL proof system is incomparable (via exponential separations) to Q-resolution, the classical QBF resolution system used in the literature. This is in stark contrast to the propositional setting where CDCL and resolution are known to be p-equivalent. This raises the question what formulas are hard for standard QCDCL, since Q-resolution lower bounds do not necessarily apply to QCDCL as we show here. In answer to this question we prove several lower bounds for QCDCL, including exponential lower bounds for a large class of random QBFs. We also introduce a strengthening of the decision heuristic used in classical QCDCL, which does not necessarily decide variables in order of the prefix, but still allows to learn asserting clauses. We show that with this decision policy, QCDCL can be exponentially faster on some formulas. We further exhibit a QCDCL proof system that is p-equivalent to Q-resolution. In comparison to classical QCDCL, this new QCDCL version adapts both decision and unit propagation policies.
We study mean-field variational Bayesian inference using the TAP approach, for Z2-synchronization as a prototypical example of a high-dimensional Bayesian model. We show that for any signal strength $\lambda > 1$ (the weak-recovery threshold), there exists a unique local minimizer of the TAP free energy functional near the mean of the Bayes posterior law. Furthermore, the TAP free energy in a local neighborhood of this minimizer is strongly convex. Consequently, a natural-gradient/mirror-descent algorithm achieves linear convergence to this minimizer from a local initialization, which may be obtained by a constant number of iterates of Approximate Message Passing (AMP). This provides a rigorous foundation for variational inference in high dimensions via minimization of the TAP free energy. We also analyze the finite-sample convergence of AMP, showing that AMP is asymptotically stable at the TAP minimizer for any $\lambda > 1$, and is linearly convergent to this minimizer from a spectral initialization for sufficiently large $\lambda$. Such a guarantee is stronger than results obtainable by state evolution analyses, which only describe a fixed number of AMP iterations in the infinite-sample limit. Our proofs combine the Kac-Rice formula and Sudakov-Fernique Gaussian comparison inequality to analyze the complexity of critical points that satisfy strong convexity and stability conditions within their local neighborhoods.
Various methods for Multi-Agent Reinforcement Learning (MARL) have been developed with the assumption that agents' policies are based on accurate state information. However, policies learned through Deep Reinforcement Learning (DRL) are susceptible to adversarial state perturbation attacks. In this work, we propose a State-Adversarial Markov Game (SAMG) and make the first attempt to investigate the fundamental properties of MARL under state uncertainties. Our analysis shows that the commonly used solution concepts of optimal agent policy and robust Nash equilibrium do not always exist in SAMGs. To circumvent this difficulty, we consider a new solution concept called robust agent policy, where agents aim to maximize the worst-case expected state value. We prove the existence of robust agent policy for finite state and finite action SAMGs. Additionally, we propose a Robust Multi-Agent Adversarial Actor-Critic (RMA3C) algorithm to learn robust policies for MARL agents under state uncertainties. Our experiments demonstrate that our algorithm outperforms existing methods when faced with state perturbations and greatly improves the robustness of MARL policies. Our code is public on //songyanghan.github.io/what_is_solution/.
This paper presents a new approach to Model Predictive Control for environments where essential, discrete variables are partially observed. Under this assumption, the belief state is a probability distribution over a finite number of states. We optimize a \textit{control-tree} where each branch assumes a given state-hypothesis. The control-tree optimization uses the probabilistic belief state information. This leads to policies more optimized with respect to likely states than unlikely ones, while still guaranteeing robust constraint satisfaction at all times. We apply the method to both linear and non-linear MPC with constraints. The optimization of the \textit{control-tree} is decomposed into optimization subproblems that are solved in parallel leading to good scalability for high number of state-hypotheses. We demonstrate the real-time feasibility of the algorithm on two examples and show the benefits compared to a classical MPC scheme optimizing w.r.t. one single hypothesis.
We consider two simple asynchronous opinion dynamics on arbitrary graphs where each node $u$ of the graph has an initial value $\xi_u(0)$. In the first process, the $NodeModel$, at each time step $t\ge 0$, a random node $u$ and a random sample of $k$ of its neighbours $v_1,v_2,\cdots,v_k$ are selected. Then $u$ updates its current value $\xi_u(t)$ to $\xi_u(t+1)=\alpha\xi_u(t)+\frac{(1-\alpha)}{k}\sum_{i=1}^k\xi_{v_i}(t)$, where $\alpha\in(0,1)$ and $k\ge1$ are parameters of the process. In the second process, the $EdgeModel$, at each step a random edge $(u,v)$ is selected. Node $u$ updates its value equivalently to the $NodeModel$ with $k=1$ and $v$ as the selected neighbour. For both processes the values of all nodes converge to the same value $F$, which is a random variable depending on the random choices made in each step. For the $NodeModel$ and regular graphs, and for the $EdgeModel$ and arbitrary graphs, the expectation of $F$ is the average of the initial values $\frac{1}{n}\sum_{u\in V}\xi_u(0)$. For the $NodeModel$ and non-regular graphs, the expectation of $F$ is the degree-weighted average of the initial values. Our results are two-fold. We consider the concentration of $F$ and show tight bounds on the variance of $F$ for regular graphs. We show that when the initial load does not depend on the number of nodes, the variance is negligible and the nodes are able to estimate the initial average of the node values. Interestingly, this variance does not depend on the graph structure. For the proof we introduce a duality between our processes and a process of two correlated random walks. We also analyse the convergence time for both models and for arbitrary graphs, showing bounds on the time $T_\varepsilon$ needed to make all node values `$\varepsilon$-close' to each other. Our bounds are asymptotically tight under some assumptions on the distribution of the starting values.
In this paper, we consider a semiconducting device with an active zone made of a single-layer material. The associated Poisson equation for the electrostatic potential (to be solved in order to perform self-consistent computations) is characterized by a surface particle density and an out-of-plane dielectric permittivity in the region surrounding the single-layer. To avoid mesh refinements in such a region, we propose an interface problem based on the natural domain decomposition suggested by the physical device. Two different interface continuity conditions are discussed. Then, we write the corresponding variational formulations adapting the so called three-fields formulation for domain decomposition and we approximate them using a proper finite element method. Finally, numerical experiments are performed to illustrate some specific features of this interface approach.
We present a novel solver technique for the anisotropic heat flux equation, aimed at the high level of anisotropy seen in magnetic confinement fusion plasmas. Such problems pose two major challenges: (i) discretization accuracy and (ii) efficient implicit linear solvers. We simultaneously address each of these challenges by constructing a new finite element discretization with excellent accuracy properties, tailored to a novel solver approach based on algebraic multigrid (AMG) methods designed for advective operators. We pose the problem in a mixed formulation, introducing the heat flux as an auxiliary variable and discretizing the temperature and auxiliary fields in a discontinuous Galerkin space. The resulting block matrix system is then reordered and solved using an approach in which two advection operators are inverted using AMG solvers based on approximate ideal restriction (AIR), which is particularly efficient for upwind discontinuous Galerkin discretizations of advection. To ensure that the advection operators are non-singular, in this paper we restrict ourselves to considering open (acyclic) magnetic field lines. We demonstrate the proposed discretization's superior accuracy over other discretizations of anisotropic heat flux, achieving error $1000\times$ smaller for anisotropy ratio of $10^9$, while also demonstrating fast convergence of the proposed iterative solver in highly anisotropic regimes where other diffusion-based AMG methods fail.
Numerical approximations of partial differential equations (PDEs) are routinely employed to formulate the solution of physics, engineering and mathematical problems involving functions of several variables, such as the propagation of heat or sound, fluid flow, elasticity, electrostatics, electrodynamics, and more. While this has led to solving many complex phenomena, there are still significant limitations. Conventional approaches such as Finite Element Methods (FEMs) and Finite Differential Methods (FDMs) require considerable time and are computationally expensive. In contrast, machine learning-based methods such as neural networks are faster once trained, but tend to be restricted to a specific discretization. This article aims to provide a comprehensive summary of conventional methods and recent machine learning-based methods to approximate PDEs numerically. Furthermore, we highlight several key architectures centered around the neural operator, a novel and fast approach (1000x) to learning the solution operator of a PDE. We will note how these new computational approaches can bring immense advantages in tackling many problems in fundamental and applied physics.