亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Neural Radiance Field (NeRF) has shown impressive performance in novel view synthesis via implicit scene representation. However, it usually suffers from poor scalability as requiring densely sampled images for each new scene. Several studies have attempted to mitigate this problem by integrating Multi-View Stereo (MVS) technique into NeRF while they still entail a cumbersome fine-tuning process for new scenes. Notably, the rendering quality will drop severely without this fine-tuning process and the errors mainly appear around the high-frequency features. In the light of this observation, we design WaveNeRF, which integrates wavelet frequency decomposition into MVS and NeRF to achieve generalizable yet high-quality synthesis without any per-scene optimization. To preserve high-frequency information when generating 3D feature volumes, WaveNeRF builds Multi-View Stereo in the Wavelet domain by integrating the discrete wavelet transform into the classical cascade MVS, which disentangles high-frequency information explicitly. With that, disentangled frequency features can be injected into classic NeRF via a novel hybrid neural renderer to yield faithful high-frequency details, and an intuitive frequency-guided sampling strategy can be designed to suppress artifacts around high-frequency regions. Extensive experiments over three widely studied benchmarks show that WaveNeRF achieves superior generalizable radiance field modeling when only given three images as input.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集(ji)成,VLSI雜志。 Publisher:Elsevier。 SIT:

The estimation of 3D human motion from video has progressed rapidly but current methods still have several key limitations. First, most methods estimate the human in camera coordinates. Second, prior work on estimating humans in global coordinates often assumes a flat ground plane and produces foot sliding. Third, the most accurate methods rely on computationally expensive optimization pipelines, limiting their use to offline applications. Finally, existing video-based methods are surprisingly less accurate than single-frame methods. We address these limitations with WHAM (World-grounded Humans with Accurate Motion), which accurately and efficiently reconstructs 3D human motion in a global coordinate system from video. WHAM learns to lift 2D keypoint sequences to 3D using motion capture data and fuses this with video features, integrating motion context and visual information. WHAM exploits camera angular velocity estimated from a SLAM method together with human motion to estimate the body's global trajectory. We combine this with a contact-aware trajectory refinement method that lets WHAM capture human motion in diverse conditions, such as climbing stairs. WHAM outperforms all existing 3D human motion recovery methods across multiple in-the-wild benchmarks. Code will be available for research purposes at //wham.is.tue.mpg.de/

Graph Neural Networks (GNNs) have demonstrated outstanding performance in various applications. Existing frameworks utilize CPU-GPU heterogeneous environments to train GNN models and integrate mini-batch and sampling techniques to overcome the GPU memory limitation. In CPU-GPU heterogeneous environments, we can divide sample-based GNN training into three steps: sample, gather, and train. Existing GNN systems use different task orchestrating methods to employ each step on CPU or GPU. After extensive experiments and analysis, we find that existing task orchestrating methods fail to fully utilize the heterogeneous resources, limited by inefficient CPU processing or GPU resource contention. In this paper, we propose NeutronOrch, a system for sample-based GNN training that incorporates a layer-based task orchestrating method and ensures balanced utilization of the CPU and GPU. NeutronOrch decouples the training process by layer and pushes down the training task of the bottom layer to the CPU. This significantly reduces the computational load and memory footprint of GPU training. To avoid inefficient CPU processing, NeutronOrch only offloads the training of frequently accessed vertices to the CPU and lets GPU reuse their embeddings with bounded staleness. Furthermore, NeutronOrch provides a fine-grained pipeline design for the layer-based task orchestrating method, fully overlapping different tasks on heterogeneous resources while strictly guaranteeing bounded staleness. The experimental results show that compared with the state-of-the-art GNN systems, NeutronOrch can achieve up to 11.51x performance speedup.

Recently, 3D content creation from text prompts has demonstrated remarkable progress by utilizing 2D and 3D diffusion models. While 3D diffusion models ensure great multi-view consistency, their ability to generate high-quality and diverse 3D assets is hindered by the limited 3D data. In contrast, 2D diffusion models find a distillation approach that achieves excellent generalization and rich details without any 3D data. However, 2D lifting methods suffer from inherent view-agnostic ambiguity thereby leading to serious multi-face Janus issues, where text prompts fail to provide sufficient guidance to learn coherent 3D results. Instead of retraining a costly viewpoint-aware model, we study how to fully exploit easily accessible coarse 3D knowledge to enhance the prompts and guide 2D lifting optimization for refinement. In this paper, we propose Sherpa3D, a new text-to-3D framework that achieves high-fidelity, generalizability, and geometric consistency simultaneously. Specifically, we design a pair of guiding strategies derived from the coarse 3D prior generated by the 3D diffusion model: a structural guidance for geometric fidelity and a semantic guidance for 3D coherence. Employing the two types of guidance, the 2D diffusion model enriches the 3D content with diversified and high-quality results. Extensive experiments show the superiority of our Sherpa3D over the state-of-the-art text-to-3D methods in terms of quality and 3D consistency.

Neural Radiance Fields (NeRFs) have achieved impressive results in novel view synthesis and surface reconstruction tasks. However, their performance suffers under challenging scenarios with sparse input views. We present CorresNeRF, a novel method that leverages image correspondence priors computed by off-the-shelf methods to supervise NeRF training. We design adaptive processes for augmentation and filtering to generate dense and high-quality correspondences. The correspondences are then used to regularize NeRF training via the correspondence pixel reprojection and depth loss terms. We evaluate our methods on novel view synthesis and surface reconstruction tasks with density-based and SDF-based NeRF models on different datasets. Our method outperforms previous methods in both photometric and geometric metrics. We show that this simple yet effective technique of using correspondence priors can be applied as a plug-and-play module across different NeRF variants. The project page is at //yxlao.github.io/corres-nerf.

We introduce EQ-Bench, a novel benchmark designed to evaluate aspects of emotional intelligence in Large Language Models (LLMs). We assess the ability of LLMs to understand complex emotions and social interactions by asking them to predict the intensity of emotional states of characters in a dialogue. The benchmark is able to discriminate effectively between a wide range of models. We find that EQ-Bench correlates strongly with comprehensive multi-domain benchmarks like MMLU (Hendrycks et al., 2020) (r=0.97), indicating that we may be capturing similar aspects of broad intelligence. Our benchmark produces highly repeatable results using a set of 60 English-language questions. We also provide open-source code for an automated benchmarking pipeline at //github.com/EQ-bench/EQ-Bench and a leaderboard at //www.eqbench.com

Vision Transformers (ViTs) achieve superior performance on various tasks compared to convolutional neural networks (CNNs), but ViTs are also vulnerable to adversarial attacks. Adversarial training is one of the most successful methods to build robust CNN models. Thus, recent works explored new methodologies for adversarial training of ViTs based on the differences between ViTs and CNNs, such as better training strategies, preventing attention from focusing on a single block, or discarding low-attention embeddings. However, these methods still follow the design of traditional supervised adversarial training, limiting the potential of adversarial training on ViTs. This paper proposes a novel defense method, MIMIR, which aims to build a different adversarial training methodology by utilizing Masked Image Modeling at pre-training. We create an autoencoder that accepts adversarial examples as input but takes the clean examples as the modeling target. Then, we create a mutual information (MI) penalty following the idea of the Information Bottleneck. Among the two information source inputs and corresponding adversarial perturbation, the perturbation information is eliminated due to the constraint of the modeling target. Next, we provide a theoretical analysis of MIMIR using the bounds of the MI penalty. We also design two adaptive attacks when the adversary is aware of the MIMIR defense and show that MIMIR still performs well. The experimental results show that MIMIR improves (natural and adversarial) accuracy on average by 4.19\% on CIFAR-10 and 5.52\% on ImageNet-1K, compared to baselines. On Tiny-ImageNet, we obtained improved natural accuracy of 2.99\% on average and comparable adversarial accuracy. Our code and trained models are publicly available\footnote{\url{//anonymous.4open.science/r/MIMIR-5444/README.md}}.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm

Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.

We propose a novel two-layered attention network based on Bidirectional Long Short-Term Memory for sentiment analysis. The novel two-layered attention network takes advantage of the external knowledge bases to improve the sentiment prediction. It uses the Knowledge Graph Embedding generated using the WordNet. We build our model by combining the two-layered attention network with the supervised model based on Support Vector Regression using a Multilayer Perceptron network for sentiment analysis. We evaluate our model on the benchmark dataset of SemEval 2017 Task 5. Experimental results show that the proposed model surpasses the top system of SemEval 2017 Task 5. The model performs significantly better by improving the state-of-the-art system at SemEval 2017 Task 5 by 1.7 and 3.7 points for sub-tracks 1 and 2 respectively.

北京阿比特科技有限公司