亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Unsupervised Domain Adaptation (UDA) approaches address the covariate shift problem by minimizing the distribution discrepancy between the source and target domains, assuming that the label distribution is invariant across domains. However, in the imbalanced domain adaptation (IDA) scenario, covariate and long-tailed label shifts both exist across domains. To tackle the IDA problem, some current research focus on minimizing the distribution discrepancies of each corresponding class between source and target domains. Such methods rely much on the reliable pseudo labels' selection and the feature distributions estimation for target domain, and the minority classes with limited numbers makes the estimations more uncertainty, which influences the model's performance. In this paper, we propose a cross-domain class discrepancy minimization method based on accumulative class-centroids for IDA (centroIDA). Firstly, class-based re-sampling strategy is used to obtain an unbiased classifier on source domain. Secondly, the accumulative class-centroids alignment loss is proposed for iterative class-centroids alignment across domains. Finally, class-wise feature alignment loss is used to optimize the feature representation for a robust classification boundary. A series of experiments have proved that our method outperforms other SOTA methods on IDA problem, especially with the increasing degree of label shift.

相關內容

Multimodal Entity Linking (MEL) is a task that aims to link ambiguous mentions within multimodal contexts to referential entities in a multimodal knowledge base. Recent methods for MEL adopt a common framework: they first interact and fuse the text and image to obtain representations of the mention and entity respectively, and then compute the similarity between them to predict the correct entity. However, these methods still suffer from two limitations: first, as they fuse the features of text and image before matching, they cannot fully exploit the fine-grained alignment relations between the mention and entity. Second, their alignment is static, leading to low performance when dealing with complex and diverse data. To address these issues, we propose a novel framework called Dynamic Relation Interactive Network (DRIN) for MEL tasks. DRIN explicitly models four different types of alignment between a mention and entity and builds a dynamic Graph Convolutional Network (GCN) to dynamically select the corresponding alignment relations for different input samples. Experiments on two datasets show that DRIN outperforms state-of-the-art methods by a large margin, demonstrating the effectiveness of our approach.

Existing multi-agent PPO algorithms lack compatibility with different types of parameter sharing when extending the theoretical guarantee of PPO to cooperative multi-agent reinforcement learning (MARL). In this paper, we propose a novel and versatile multi-agent PPO algorithm for cooperative MARL to overcome this limitation. Our approach is achieved upon the proposed full-pipeline paradigm, which establishes multiple parallel optimization pipelines by employing various equivalent decompositions of the advantage function. This procedure successfully formulates the interconnections among agents in a more general manner, i.e., the interconnections among pipelines, making it compatible with diverse types of parameter sharing. We provide a solid theoretical foundation for policy improvement and subsequently develop a practical algorithm called Full-Pipeline PPO (FP3O) by several approximations. Empirical evaluations on Multi-Agent MuJoCo and StarCraftII tasks demonstrate that FP3O outperforms other strong baselines and exhibits remarkable versatility across various parameter-sharing configurations.

Neural network solvers represent an innovative and promising approach for tackling time-fractional partial differential equations by utilizing deep learning techniques. L1 interpolation approximation serves as the standard method for addressing time-fractional derivatives within neural network solvers. However, we have discovered that neural network solvers based on L1 interpolation approximation are unable to fully exploit the benefits of neural networks, and the accuracy of these models is constrained to interpolation errors. In this paper, we present the high-precision Hermite Neural Solver (HNS) for solving time-fractional partial differential equations. Specifically, we first construct a high-order explicit approximation scheme for fractional derivatives using Hermite interpolation techniques, and rigorously analyze its approximation accuracy. Afterward, taking into account the infinitely differentiable properties of deep neural networks, we integrate the high-order Hermite interpolation explicit approximation scheme with deep neural networks to propose the HNS. The experimental results show that HNS achieves higher accuracy than methods based on the L1 scheme for both forward and inverse problems, as well as in high-dimensional scenarios. This indicates that HNS has significantly improved accuracy and flexibility compared to existing L1-based methods, and has overcome the limitations of explicit finite difference approximation methods that are often constrained to function value interpolation. As a result, the HNS is not a simple combination of numerical computing methods and neural networks, but rather achieves a complementary and mutually reinforcing advantages of both approaches. The data and code can be found at \url{//github.com/hsbhc/HNS}.

Star-join query is the fundamental task in data warehouse and has wide applications in On-line Analytical Processing (OLAP) scenarios. Due to the large number of foreign key constraints and the asymmetric effect in the neighboring instance between the fact and dimension tables, even those latest DP efforts specifically designed for join, if directly applied to star-join query, will suffer from extremely large estimation errors and expensive computational cost. In this paper, we are thus motivated to propose DP-starJ, a novel Differentially Private framework for star-Join queries. DP-starJ consists of a series of strategies tailored to specific features of star-join, including 1) we unveil the different effect of fact and dimension tables on the neighboring database instances, and accordingly revisit the definitions tailored to different cases of star-join; 2) we propose Predicate Mechanism (PM), which utilizes predicate perturbation to inject noise into the join procedure instead of the results; 3) to further boost the robust performance, we propose a DP-compliant star-join algorithm for various types of star-join tasks based on PM. We provide both theoretical analysis and empirical study, which demonstrate the superiority of the proposed methods over the state-of-the-art solutions in terms of accuracy, efficiency, and scalability.

Labels are widely used in augmented reality (AR) to display digital information. Ensuring the readability of AR labels requires placing them occlusion-free while keeping visual linkings legible, especially when multiple labels exist in the scene. Although existing optimization-based methods, such as force-based methods, are effective in managing AR labels in static scenarios, they often struggle in dynamic scenarios with constantly moving objects. This is due to their focus on generating layouts optimal for the current moment, neglecting future moments and leading to sub-optimal or unstable layouts over time. In this work, we present RL-LABEL, a deep reinforcement learning-based method for managing the placement of AR labels in scenarios involving moving objects. RL-LABEL considers the current and predicted future states of objects and labels, such as positions and velocities, as well as the user's viewpoint, to make informed decisions about label placement. It balances the trade-offs between immediate and long-term objectives. Our experiments on two real-world datasets show that RL-LABEL effectively learns the decision-making process for long-term optimization, outperforming two baselines (i.e., no view management and a force-based method) by minimizing label occlusions, line intersections, and label movement distance. Additionally, a user study involving 18 participants indicates that RL-LABEL excels over the baselines in aiding users to identify, compare, and summarize data on AR labels within dynamic scenes.

Current interactive systems with natural language interfaces lack the ability to understand a complex information-seeking request which expresses several implicit constraints at once, and there is no prior information about user preferences e.g.,"find hiking trails around San Francisco which are accessible with toddlers and have beautiful scenery in summer", where output is a list of possible suggestions for users to start their exploration. In such scenarios, user requests can be issued in one shot in the form of a complex and long query, unlike conversational and exploratory search models, where require short utterances or queries are often presented to the system step by step. We have designed and deployed a platform to collect the data from approaching such complex interactive systems. Moreover, despite with the current advancement of generative language models these models suffer from hallucination in providing accurate factual knowledge. All language models are mostly trained in large part on web-scraped data from the past, which usually is not useful for immediate users' needs. In this article, we propose an IA that leverages Large Language Models (LLM) for complex request understanding and makes it interactive using Reinforcement learning that allows intricately refine user requests by making them complete, leading to better retrieval and reduce LLMs hallucination problems for current user needs. To demonstrate the performance of the proposed modeling paradigm, we have adopted various pre-retrieval metrics that capture the extent to which guided interactions with our system yield better retrieval results. Through extensive experimentation, we demonstrated that our method significantly outperforms several robust baselines.

Visible-infrared person re-identification (VI-ReID) is a challenging task due to large cross-modality discrepancies and intra-class variations. Existing methods mainly focus on learning modality-shared representations by embedding different modalities into the same feature space. As a result, the learned feature emphasizes the common patterns across modalities while suppressing modality-specific and identity-aware information that is valuable for Re-ID. To address these issues, we propose a novel Modality Unifying Network (MUN) to explore a robust auxiliary modality for VI-ReID. First, the auxiliary modality is generated by combining the proposed cross-modality learner and intra-modality learner, which can dynamically model the modality-specific and modality-shared representations to alleviate both cross-modality and intra-modality variations. Second, by aligning identity centres across the three modalities, an identity alignment loss function is proposed to discover the discriminative feature representations. Third, a modality alignment loss is introduced to consistently reduce the distribution distance of visible and infrared images by modality prototype modeling. Extensive experiments on multiple public datasets demonstrate that the proposed method surpasses the current state-of-the-art methods by a significant margin.

This paper presents a scalable multigrid preconditioner targeting large-scale systems arising from discontinuous Petrov-Galerkin (DPG) discretizations of high-frequency wave operators. This work is built on previously developed multigrid preconditioning techniques of Petrides and Demkowicz (Comput. Math. Appl. 87 (2021) pp. 12-26) and extends the convergence results from $\mathcal{O}(10^7)$ degrees of freedom (DOFs) to $\mathcal{O}(10^9)$ DOFs using a new scalable parallel MPI/OpenMP implementation. Novel contributions of this paper include an alternative definition of coarse-grid systems based on restriction of fine-grid operators, yielding superior convergence results. In the uniform refinement setting, a detailed convergence study is provided, demonstrating h and p robust convergence and linear dependence with respect to the wave frequency. The paper concludes with numerical results on hp-adaptive simulations including a large-scale seismic modeling benchmark problem with high material contrast.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司