The integration of a complex set of Electronic Design Automation (EDA) tools to enhance interoperability is a critical concern for circuit designers. Recent advancements in large language models (LLMs) have showcased their exceptional capabilities in natural language processing and comprehension, offering a novel approach to interfacing with EDA tools. This research paper introduces ChatEDA, an autonomous agent for EDA empowered by a large language model, AutoMage, complemented by EDA tools serving as executors. ChatEDA streamlines the design flow from the Register-Transfer Level (RTL) to the Graphic Data System Version II (GDSII) by effectively managing task planning, script generation, and task execution. Through comprehensive experimental evaluations, ChatEDA has demonstrated its proficiency in handling diverse requirements, and our fine-tuned AutoMage model has exhibited superior performance compared to GPT-4 and other similar LLMs.
Cell tracking remains a pivotal yet challenging task in biomedical research. The full potential of deep learning for this purpose is often untapped due to the limited availability of comprehensive and varied training data sets. In this paper, we present SynCellFactory, a generative cell video augmentation. At the heart of SynCellFactory lies the ControlNet architecture, which has been fine-tuned to synthesize cell imagery with photorealistic accuracy in style and motion patterns. This technique enables the creation of synthetic yet realistic cell videos that mirror the complexity of authentic microscopy time-lapses. Our experiments demonstrate that SynCellFactory boosts the performance of well-established deep learning models for cell tracking, particularly when original training data is sparse.
Creating artistic 3D scenes can be time-consuming and requires specialized knowledge. To address this, recent works such as ARF, use a radiance field-based approach with style constraints to generate 3D scenes that resemble a style image provided by the user. However, these methods lack fine-grained control over the resulting scenes. In this paper, we introduce Controllable Artistic Radiance Fields (CoARF), a novel algorithm for controllable 3D scene stylization. CoARF enables style transfer for specified objects, compositional 3D style transfer and semantic-aware style transfer. We achieve controllability using segmentation masks with different label-dependent loss functions. We also propose a semantic-aware nearest neighbor matching algorithm to improve the style transfer quality. Our extensive experiments demonstrate that CoARF provides user-specified controllability of style transfer and superior style transfer quality with more precise feature matching.
With recent legislation on the right to be forgotten, machine unlearning has emerged as a crucial research area. It facilitates the removal of a user's data from federated trained machine learning models without the necessity for retraining from scratch. However, current machine unlearning algorithms are confronted with challenges of efficiency and validity. To address the above issues, we propose a new framework, named Goldfish. It comprises four modules: basic model, loss function, optimization, and extension. To address the challenge of low validity in existing machine unlearning algorithms, we propose a novel loss function. It takes into account the loss arising from the discrepancy between predictions and actual labels in the remaining dataset. Simultaneously, it takes into consideration the bias of predicted results on the removed dataset. Moreover, it accounts for the confidence level of predicted results. Additionally, to enhance efficiency, we adopt knowledge a distillation technique in the basic model and introduce an optimization module that encompasses the early termination mechanism guided by empirical risk and the data partition mechanism. Furthermore, to bolster the robustness of the aggregated model, we propose an extension module that incorporates a mechanism using adaptive distillation temperature to address the heterogeneity of user local data and a mechanism using adaptive weight to handle the variety in the quality of uploaded models. Finally, we conduct comprehensive experiments to illustrate the effectiveness of proposed approach.
3D simulated environments play a critical role in Embodied AI, but their creation requires expertise and extensive manual effort, restricting their diversity and scope. To mitigate this limitation, we present Holodeck, a system that generates 3D environments to match a user-supplied prompt fully automatedly. Holodeck can generate diverse scenes, e.g., arcades, spas, and museums, adjust the designs for styles, and can capture the semantics of complex queries such as "apartment for a researcher with a cat" and "office of a professor who is a fan of Star Wars". Holodeck leverages a large language model (i.e., GPT-4) for common sense knowledge about what the scene might look like and uses a large collection of 3D assets from Objaverse to populate the scene with diverse objects. To address the challenge of positioning objects correctly, we prompt GPT-4 to generate spatial relational constraints between objects and then optimize the layout to satisfy those constraints. Our large-scale human evaluation shows that annotators prefer Holodeck over manually designed procedural baselines in residential scenes and that Holodeck can produce high-quality outputs for diverse scene types. We also demonstrate an exciting application of Holodeck in Embodied AI, training agents to navigate in novel scenes like music rooms and daycares without human-constructed data, which is a significant step forward in developing general-purpose embodied agents.
Emerging scholarship suggests that the EU legal concept of direct discrimination - where a person is given different treatment on grounds of a protected characteristic - may apply to various algorithmic decision-making contexts. This has important implications: unlike indirect discrimination, there is generally no 'objective justification' stage in the direct discrimination framework, which means that the deployment of directly discriminatory algorithms will usually be unlawful per se. In this paper, we focus on the most likely candidate for direct discrimination in the algorithmic context, termed inherent direct discrimination, where a proxy is inextricably linked to a protected characteristic. We draw on computer science literature to suggest that, in the algorithmic context, 'treatment on the grounds of' needs to be understood in terms of two steps: proxy capacity and proxy use. Only where both elements can be made out can direct discrimination be said to be `on grounds of' a protected characteristic. We analyse the legal conditions of our proposed proxy capacity and proxy use tests. Based on this analysis, we discuss technical approaches and metrics that could be developed or applied to identify inherent direct discrimination in algorithmic decision-making.
We present a differentiable representation, DMesh, for general 3D triangular meshes. DMesh considers both the geometry and connectivity information of a mesh. In our design, we first get a set of convex tetrahedra that compactly tessellates the domain based on Weighted Delaunay Triangulation (WDT), and formulate probability of faces to exist on our desired mesh in a differentiable manner based on the WDT. This enables DMesh to represent meshes of various topology in a differentiable way, and allows us to reconstruct the mesh under various observations, such as point cloud and multi-view images using gradient-based optimization. The source code and full paper is available at: //sonsang.github.io/dmesh-project.
We focus on the problem of Personalized Federated Continual Learning (PFCL): a group of distributed clients, each with a sequence of local tasks on arbitrary data distributions, collaborate through a central server to train a personalized model at each client, with the model expected to achieve good performance on all local tasks. We propose a novel PFCL framework called Federated Memory Strengthening FedMeS to address the challenges of client drift and catastrophic forgetting. In FedMeS, each client stores samples from previous tasks using a small amount of local memory, and leverages this information to both 1) calibrate gradient updates in training process; and 2) perform KNN-based Gaussian inference to facilitate personalization. FedMeS is designed to be task-oblivious, such that the same inference process is applied to samples from all tasks to achieve good performance. FedMeS is analyzed theoretically and evaluated experimentally. It is shown to outperform all baselines in average accuracy and forgetting rate, over various combinations of datasets, task distributions, and client numbers.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.