亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Self-driving cars and trucks, autonomous vehicles (AVs), should not be accepted by regulatory bodies and the public until they have much higher confidence in their safety and reliability -- which can most practically and convincingly be achieved by testing. But existing testing methods are inadequate for checking the end-to-end behaviors of AV controllers against complex, real-world corner cases involving interactions with multiple independent agents such as pedestrians and human-driven vehicles. While test-driving AVs on streets and highways fails to capture many rare events, existing simulation-based testing methods mainly focus on simple scenarios and do not scale well for complex driving situations that require sophisticated awareness of the surroundings. To address these limitations, we propose a new fuzz testing technique, called AutoFuzz, which can leverage widely-used AV simulators' API grammars to generate semantically and temporally valid complex driving scenarios (sequences of scenes). To efficiently search for traffic violations-inducing scenarios in a large search space, we propose a constrained neural network (NN) evolutionary search method to optimize AutoFuzz. Evaluation of our prototype on one state-of-the-art learning-based controller, two rule-based controllers, and one industrial-grade controller in five scenarios shows that AutoFuzz efficiently finds hundreds of traffic violations in high-fidelity simulation environments. For each scenario, AutoFuzz can find on average 10-39% more unique traffic violations than the best-performing baseline method. Further, fine-tuning the learning-based controller with the traffic violations found by AutoFuzz successfully reduced the traffic violations found in the new version of the AV controller software.

相關內容

We propose BareSkinNet, a novel method that simultaneously removes makeup and lighting influences from the face image. Our method leverages a 3D morphable model and does not require a reference clean face image or a specified light condition. By combining the process of 3D face reconstruction, we can easily obtain 3D geometry and coarse 3D textures. Using this information, we can infer normalized 3D face texture maps (diffuse, normal, roughness, and specular) by an image-translation network. Consequently, reconstructed 3D face textures without undesirable information will significantly benefit subsequent processes, such as re-lighting or re-makeup. In experiments, we show that BareSkinNet outperforms state-of-the-art makeup removal methods. In addition, our method is remarkably helpful in removing makeup to generate consistent high-fidelity texture maps, which makes it extendable to many realistic face generation applications. It can also automatically build graphic assets of face makeup images before and after with corresponding 3D data. This will assist artists in accelerating their work, such as 3D makeup avatar creation.

Reinforcement learning (RL) and trajectory optimization (TO) present strong complementary advantages. On one hand, RL approaches are able to learn global control policies directly from data, but generally require large sample sizes to properly converge towards feasible policies. On the other hand, TO methods are able to exploit gradient-based information extracted from simulators to quickly converge towards a locally optimal control trajectory which is only valid within the vicinity of the solution. Over the past decade, several approaches have aimed to adequately combine the two classes of methods in order to obtain the best of both worlds. Following on from this line of research, we propose several improvements on top of these approaches to learn global control policies quicker, notably by leveraging sensitivity information stemming from TO methods via Sobolev learning, and augmented Lagrangian techniques to enforce the consensus between TO and policy learning. We evaluate the benefits of these improvements on various classical tasks in robotics through comparison with existing approaches in the literature.

In this paper, we focus on the problem of efficiently locating a target object described with free-form language using a mobile robot equipped with vision sensors (e.g., an RGBD camera). Conventional active visual search predefines a set of objects to search for, rendering these techniques restrictive in practice. To provide added flexibility in active visual searching, we propose a system where a user can enter target commands using free-form language; we call this system Zero-shot Active Visual Search (ZAVIS). ZAVIS detects and plans to search for a target object inputted by a user through a semantic grid map represented by static landmarks (e.g., desk or bed). For efficient planning of object search patterns, ZAVIS considers commonsense knowledge-based co-occurrence and predictive uncertainty while deciding which landmarks to visit first. We validate the proposed method with respect to SR (success rate) and SPL (success weighted by path length) in both simulated and real-world environments. The proposed method outperforms previous methods in terms of SPL in simulated scenarios with an average gap of 0.283. We further demonstrate ZAVIS with a Pioneer-3AT robot in real-world studies.

Neural network-based driving planners have shown great promises in improving task performance of autonomous driving. However, it is critical and yet very challenging to ensure the safety of systems with neural network based components, especially in dense and highly interactive traffic environments. In this work, we propose a safety-driven interactive planning framework for neural network-based lane changing. To prevent over conservative planning, we identify the driving behavior of surrounding vehicles and assess their aggressiveness, and then adapt the planned trajectory for the ego vehicle accordingly in an interactive manner. The ego vehicle can proceed to change lanes if a safe evasion trajectory exists even in the predicted worst case; otherwise, it can stay around the current lateral position or return back to the original lane. We quantitatively demonstrate the effectiveness of our planner design and its advantage over baseline methods through extensive simulations with diverse and comprehensive experimental settings, as well as in real-world scenarios collected by an autonomous vehicle company.

Purpose: We perform anatomical landmarking for craniomaxillofacial (CMF) bones without explicitly segmenting them. Towards this, we propose a new simple yet efficient deep network architecture, called \textit{relational reasoning network (RRN)}, to accurately learn the local and the global relations among the landmarks in CMF bones; specifically, mandible, maxilla, and nasal bones. Approach: The proposed RRN works in an end-to-end manner, utilizing learned relations of the landmarks based on dense-block units. For a given few landmarks as input, RRN treats the landmarking process similar to a data imputation problem where predicted landmarks are considered missing. Results: We applied RRN to cone beam computed tomography scans obtained from 250 patients. With a 4-fold cross validation technique, we obtained an average root mean squared error of less than 2 mm per landmark. Our proposed RRN has revealed unique relationships among the landmarks that help us in inferring several \textit{reasoning} about informativeness of the landmark points. The proposed system identifies the missing landmark locations accurately even when severe pathology or deformation are present in the bones. Conclusions: Accurately identifying anatomical landmarks is a crucial step in deformation analysis and surgical planning for CMF surgeries. Achieving this goal without the need for explicit bone segmentation addresses a major limitation of segmentation based approaches, where segmentation failure (as often the case in bones with severe pathology or deformation) could easily lead to incorrect landmarking. To the best of our knowledge, this is the first of its kind algorithm finding anatomical relations of the objects using deep learning.

We consider the problem of estimating the topology of multiple networks from nodal observations, where these networks are assumed to be drawn from the same (unknown) random graph model. We adopt a graphon as our random graph model, which is a nonparametric model from which graphs of potentially different sizes can be drawn. The versatility of graphons allows us to tackle the joint inference problem even for the cases where the graphs to be recovered contain different number of nodes and lack precise alignment across the graphs. Our solution is based on combining a maximum likelihood penalty with graphon estimation schemes and can be used to augment existing network inference methods. The proposed joint network and graphon estimation is further enhanced with the introduction of a robust method for noisy graph sampling information. We validate our proposed approach by comparing its performance against competing methods in synthetic and real-world datasets.

Detecting dangerous traffic agents in videos captured by vehicle-mounted dashboard cameras (dashcams) is essential to facilitate safe navigation in a complex environment. Accident-related videos are just a minor portion of the driving video big data, and the transient pre-accident processes are highly dynamic and complex. Besides, risky and non-risky traffic agents can be similar in their appearance. These make risky object localization in the driving video particularly challenging. To this end, this paper proposes an attention-guided multistream feature fusion network (AM-Net) to localize dangerous traffic agents from dashcam videos. Two Gated Recurrent Unit (GRU) networks use object bounding box and optical flow features extracted from consecutive video frames to capture spatio-temporal cues for distinguishing dangerous traffic agents. An attention module coupled with the GRUs learns to attend to the traffic agents relevant to an accident. Fusing the two streams of features, AM-Net predicts the riskiness scores of traffic agents in the video. In supporting this study, the paper also introduces a benchmark dataset called Risky Object Localization (ROL). The dataset contains spatial, temporal, and categorical annotations with the accident, object, and scene-level attributes. The proposed AM-Net achieves a promising performance of 85.73% AUC on the ROL dataset. Meanwhile, the AM-Net outperforms current state-of-the-art for video anomaly detection by 6.3% AUC on the DoTA dataset. A thorough ablation study further reveals AM-Net's merits by evaluating the contributions of its different components.

Forecasting the future states of surrounding traffic participants is a crucial capability for autonomous vehicles. The recently proposed occupancy flow field prediction introduces a scalable and effective representation to jointly predict surrounding agents' future motions in a scene. However, the challenging part is to model the underlying social interactions among traffic agents and the relations between occupancy and flow. Therefore, this paper proposes a novel Multi-modal Hierarchical Transformer network that fuses the vectorized (agent motion) and visual (scene flow, map, and occupancy) modalities and jointly predicts the flow and occupancy of the scene. Specifically, visual and vector features from sensory data are encoded through a multi-stage Transformer module and then a late-fusion Transformer module with temporal pixel-wise attention. Importantly, a flow-guided multi-head self-attention (FG-MSA) module is designed to better aggregate the information on occupancy and flow and model the mathematical relations between them. The proposed method is comprehensively validated on the Waymo Open Motion Dataset and compared against several state-of-the-art models. The results reveal that our model with much more compact architecture and data inputs than other methods can achieve comparable performance. We also demonstrate the effectiveness of incorporating vectorized agent motion features and the proposed FG-MSA module. Compared to the ablated model without the FG-MSA module, which won 2nd place in the 2022 Waymo Occupancy and Flow Prediction Challenge, the current model shows better separability for flow and occupancy and further performance improvements.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

Vision-based vehicle detection approaches achieve incredible success in recent years with the development of deep convolutional neural network (CNN). However, existing CNN based algorithms suffer from the problem that the convolutional features are scale-sensitive in object detection task but it is common that traffic images and videos contain vehicles with a large variance of scales. In this paper, we delve into the source of scale sensitivity, and reveal two key issues: 1) existing RoI pooling destroys the structure of small scale objects, 2) the large intra-class distance for a large variance of scales exceeds the representation capability of a single network. Based on these findings, we present a scale-insensitive convolutional neural network (SINet) for fast detecting vehicles with a large variance of scales. First, we present a context-aware RoI pooling to maintain the contextual information and original structure of small scale objects. Second, we present a multi-branch decision network to minimize the intra-class distance of features. These lightweight techniques bring zero extra time complexity but prominent detection accuracy improvement. The proposed techniques can be equipped with any deep network architectures and keep them trained end-to-end. Our SINet achieves state-of-the-art performance in terms of accuracy and speed (up to 37 FPS) on the KITTI benchmark and a new highway dataset, which contains a large variance of scales and extremely small objects.

北京阿比特科技有限公司