亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider distributed optimization over a $d$-dimensional space, where $K$ remote clients send coded gradient estimates over an {\em additive Gaussian Multiple Access Channel (MAC)} with noise variance $\sigma_z^2$. Furthermore, the codewords from the clients must satisfy the average power constraint $P$, resulting in a signal-to-noise ratio (SNR) of $KP/\sigma_z^2$. In this paper, we study the fundamental limits imposed by MAC on the {convergence rate of any distributed optimization algorithm and design optimal communication schemes to achieve these limits.} Our first result is a lower bound for the convergence rate, showing that communicating over a MAC imposes a slowdown of $\sqrt{d/\frac{1}{2}\log(1+\SNR)}$ on any protocol compared to the centralized setting. Next, we design a computationally tractable {digital} communication scheme that matches the lower bound to a logarithmic factor in $K$ when combined with a projected stochastic gradient descent algorithm. At the heart of our communication scheme is carefully combining several compression and modulation ideas such as quantizing along random bases, {\em Wyner-Ziv compression}, {\em modulo-lattice decoding}, and {\em amplitude shift keying.} We also show that analog schemes, which are popular due to their ease of implementation, can give close to optimal convergence rates at low $\SNR$ but experience a slowdown of roughly $\sqrt{d}$ at high $\SNR$.

相關內容

We study local filters for the Lipschitz property of real-valued functions $f: V \to [0,r]$, where the Lipschitz property is defined with respect to an arbitrary undirected graph $G=(V,E)$. We give nearly optimal local Lipschitz filters both with respect to $\ell_1$-distance and $\ell_0$-distance. Previous work only considered unbounded-range functions over $[n]^d$. Jha and Raskhodnikova (SICOMP `13) gave an algorithm for such functions with lookup complexity exponential in $d$, which Awasthi et al. (ACM Trans. Comput. Theory) showed was necessary in this setting. We demonstrate that important applications of local Lipschitz filters can be accomplished with filters for functions with bounded-range. For functions $f: [n]^d\to [0,r]$, we circumvent the lower bound and achieve running time $(d^r\log n)^{O(\log r)}$ for the $\ell_1$-respecting filter and $d^{O(r)}\text{polylog } n$ for the $\ell_0$-respecting filter. Our local filters provide a novel Lipschitz extension that can be implemented locally. Furthermore, we show that our algorithms have nearly optimal dependence on $r$ for the domain $\{0,1\}^d$. In addition, our lower bound resolves an open question of Awasthi et al., removing one of the conditions necessary for their lower bound for general range. We prove our lower bound via a reduction from distribution-free Lipschitz testing and a new technique for proving hardness for {\em adaptive} algorithms. We provide two applications of our local filters to arbitrary real-valued functions. In the first application, we use them in conjunction with the Laplace mechanism for differential privacy and noisy binary search to provide mechanisms for privately releasing outputs of black-box functions, even in the presence of malicious clients. In the second application, we use our local filters to obtain the first nontrivial tolerant tester for the Lipschitz property.

A private compression design problem is studied, where an encoder observes useful data $Y$, wishes to compress it using variable length code and communicates it through an unsecured channel. Since $Y$ is correlated with private data $X$, the encoder uses a private compression mechanism to design encoded message $\cal C$ and sends it over the channel. An adversary is assumed to have access to the output of the encoder, i.e., $\cal C$, and tries to estimate $X$. Furthermore, it is assumed that both encoder and decoder have access to a shared secret key $W$. In this work, we generalize the perfect privacy (secrecy) assumption and consider a non-zero leakage between the private data $X$ and encoded message $\cal C$. The design goal is to encode message $\cal C$ with minimum possible average length that satisfies non-perfect privacy constraints. We find upper and lower bounds on the average length of the encoded message using different privacy metrics and study them in special cases. For the achievability we use two-part construction coding and extended versions of Functional Representation Lemma. Lastly, in an example we show that the bounds can be asymptotically tight.

The variational autoencoder (VAE) is a popular deep latent variable model used to analyse high-dimensional datasets by learning a low-dimensional latent representation of the data. It simultaneously learns a generative model and an inference network to perform approximate posterior inference. Recently proposed extensions to VAEs that can handle temporal and longitudinal data have applications in healthcare, behavioural modelling, and predictive maintenance. However, these extensions do not account for heterogeneous data (i.e., data comprising of continuous and discrete attributes), which is common in many real-life applications. In this work, we propose the heterogeneous longitudinal VAE (HL-VAE) that extends the existing temporal and longitudinal VAEs to heterogeneous data. HL-VAE provides efficient inference for high-dimensional datasets and includes likelihood models for continuous, count, categorical, and ordinal data while accounting for missing observations. We demonstrate our model's efficacy through simulated as well as clinical datasets, and show that our proposed model achieves competitive performance in missing value imputation and predictive accuracy.

Quantum programs are notoriously difficult to code and verify due to unintuitive quantum knowledge associated with quantum programming. Automated tools relieving the tedium and errors associated with low-level quantum details would hence be highly desirable. In this paper, we initiate the study of program synthesis for quantum unitary programs that recursively define a family of unitary circuits for different input sizes, which are widely used in existing quantum programming languages. Specifically, we present QSynth, the first quantum program synthesis framework, including a new inductive quantum programming language, its specification, a sound logic for reasoning, and an encoding of the reasoning procedure into SMT instances. By leveraging existing SMT solvers, QSynth successfully synthesizes ten quantum unitary programs including quantum adder circuits, quantum eigenvalue inversion circuits and Quantum Fourier Transformation, which can be readily transpiled to executable programs on major quantum platforms, e.g., Q#, IBM Qiskit, and AWS Braket.

We present a simple functional programming language, called Dual PCF, that implements forward mode automatic differentiation using dual numbers in the framework of exact real number computation. The main new feature of this language is the ability to evaluate correctly up to the precision specified by the user -- in a simple and direct way -- the directional derivative of functionals as well as first order functions. In contrast to other comparable languages, Dual PCF also includes the recursive operator for defining functions and functionals. We provide a wide range of examples of Lipschitz functions and functionals that can be defined in Dual PCF. We use domain theory both to give a denotational semantics to the language and to prove the correctness of the new derivative operator using logical relations. To be able to differentiate functionals -- including on function spaces equipped with their compact-open topology that do not admit a norm -- we develop a domain-theoretic directional derivative that is Scott continuous and extends Clarke's subgradient of real-valued locally Lipschitz maps on Banach spaces to real-valued continuous maps on Hausdorff topological vector spaces. Finally, we show that we can express arbitrary computable linear functionals in Dual PCF.

Lawvere showed that generalised metric spaces are categories enriched over $[0, \infty]$, the quantale of the positive extended reals. The statement of enrichment is a quantitative analogue of being a preorder. Towards seeking a logic for quantitative metric reasoning, we investigate three $[0,\infty]$-valued propositional logics over the Lawvere quantale. The basic logical connectives shared by all three logics are those that can be interpreted in any quantale, viz finite conjunctions and disjunctions, tensor (addition for the Lawvere quantale) and linear implication (here a truncated subtraction); to these we add, in turn, the constant $1$ to express integer values, and scalar multiplication by a non-negative real to express general affine combinations. Quantitative equational logic can be interpreted in the third logic if we allow inference systems instead of axiomatic systems. For each of these logics we develop a natural deduction system which we prove to be decidably complete w.r.t. the quantale-valued semantics. The heart of the completeness proof makes use of the Motzkin transposition theorem. Consistency is also decidable; the proof makes use of Fourier-Motzkin elimination of linear inequalities. Strong completeness does not hold in general, even (as is known) for theories over finitely-many propositional variables; indeed even an approximate form of strong completeness in the sense of Pavelka or Ben Yaacov -- provability up to arbitrary precision -- does not hold. However, we can show it for theories axiomatized by a (not necessarily finite) set of judgements in normal form over a finite set of propositional variables when we restrict to models that do not map variables to $\infty$; the proof uses Hurwicz's general form of the Farkas' Lemma.

We construct quantum public-key encryption from one-way functions.In our construction, public keys are quantum, but ciphertexts are classical. Quantum public-key encryption from one-way functions (or weaker primitives such as pseudorandom function-like states) are also proposed in some recent works [Morimae-Yamakawa, eprint:2022/1336; Coladangelo, eprint:2023/282; Barooti-Grilo-Malavolta-Sattath-Vu-Walter, eprint:2023/877]. However, they have a huge drawback: they are secure only when quantum public keys can be transmitted to the sender (who runs the encryption algorithm) without being tampered with by the adversary, which seems to require unsatisfactory physical setup assumptions such as secure quantum channels. Our construction is free from such a drawback: it guarantees the secrecy of the encrypted messages even if we assume only unauthenticated quantum channels. Thus, the encryption is done with adversarially tampered quantum public keys. Our construction is the first quantum public-key encryption that achieves the goal of classical public-key encryption, namely, to establish secure communication over insecure channels, based only on one-way functions. Moreover, we show a generic compiler to upgrade security against chosen plaintext attacks (CPA security) into security against chosen ciphertext attacks (CCA security) only using one-way functions. As a result, we obtain CCA secure quantum public-key encryption based only on one-way functions.

We show that the problem of whether a query is equivalent to a query of tree-width $k$ is decidable, for the class of Unions of Conjunctive Regular Path Queries with two-way navigation (UC2RPQs). A previous result by Barcel\'o, Romero, and Vardi [SIAM Journal on Computing, 2016] has shown decidability for the case $k=1$, and here we extend this result showing that decidability in fact holds for any arbitrary $k\geq 1$. The algorithm is in 2ExpSpace, but for the restricted but practically relevant case where all regular expressions of the query are of the form $a^*$ or $(a_1 + \dotsb + a_n)$ we show that the complexity of the problem drops to $\Pi^P_2$. We also investigate the related problem of approximating a UC2RPQ by queries of small tree-width. We exhibit an algorithm which, for any fixed number $k$, builds the maximal under-approximation of tree-width $k$ of a UC2RPQ. The maximal under-approximation of tree-width $k$ of a query $q$ is a query $q'$ of tree-width $k$ which is contained in $q$ in a maximal and unique way, that is, such that for every query $q''$ of tree-width $k$, if $q''$ is contained in $q$ then $q''$ is also contained in $q'$. Our approach is shown to be robust, in the sense that it allows also to test equivalence with queries of a given path-width, it also covers the previously known result for $k=1$, and it allows to test for equivalence of whether a (one-way) UCRPQ is equivalent to a UCRPQ of a given tree-width (or path-width).

Automatic text-based diacritic restoration models generally have high diacritic error rates when applied to speech transcripts as a result of domain and style shifts in spoken language. In this work, we explore the possibility of improving the performance of automatic diacritic restoration when applied to speech data by utilizing the parallel spoken utterances. In particular, we use the pre-trained Whisper ASR model fine-tuned on relatively small amounts of diacritized Arabic speech data to produce rough diacritized transcripts for the speech utterances, which we then use as an additional input for a transformer-based diacritic restoration model. The proposed model consistently improve diacritic restoration performance compared to an equivalent text-only model, with at least 5\% absolute reduction in diacritic error rate within the same domain and on two out-of-domain test sets. Our results underscore the inadequacy of current text-based diacritic restoration models for speech data sets and provide a new baseline for speech-based diacritic restoration.

We propose a Makefile for developing containerized $\LaTeX$ technical documents. The Makefile allows the author to execute the code that generates variables, tables and figures (results), which are then used during the $\LaTeX$ compilation, to produce either the draft (fast) or full (slow) version of the document. We also present various utilities that aid in automating the results generation and improve the reproducibility of the document. We release an open source repository of a template that uses the Makefile and demonstrate its use by developing this paper.

北京阿比特科技有限公司