Mobile crowd sensing (MCS) has emerged as an increasingly popular sensing paradigm due to its cost-effectiveness. This approach relies on platforms to outsource tasks to participating workers when prompted by task publishers. Although incentive mechanisms have been devised to foster widespread participation in MCS, most of them focus only on static tasks (i.e., tasks for which the timing and type are known in advance) and do not protect the privacy of worker bids. In a dynamic and resource-constrained environment, tasks are often uncertain (i.e., the platform lacks a priori knowledge about the tasks) and worker bids may be vulnerable to inference attacks. This paper presents HERALD*, an incentive mechanism that addresses these issues through the use of uncertainty and hidden bids. Theoretical analysis reveals that HERALD* satisfies a range of critical criteria, including truthfulness, individual rationality, differential privacy, low computational complexity, and low social cost. These properties are then corroborated through a series of evaluations.
This paper proposes a data-efficient detection method for deep neural networks against backdoor attacks under a black-box scenario. The proposed approach is motivated by the intuition that features corresponding to triggers have a higher influence in determining the backdoored network output than any other benign features. To quantitatively measure the effects of triggers and benign features on determining the backdoored network output, we introduce five metrics. To calculate the five-metric values for a given input, we first generate several synthetic samples by injecting the input's partial contents into clean validation samples. Then, the five metrics are computed by using the output labels of the corresponding synthetic samples. One contribution of this work is the use of a tiny clean validation dataset. Having the computed five metrics, five novelty detectors are trained from the validation dataset. A meta novelty detector fuses the output of the five trained novelty detectors to generate a meta confidence score. During online testing, our method determines if online samples are poisoned or not via assessing their meta confidence scores output by the meta novelty detector. We show the efficacy of our methodology through a broad range of backdoor attacks, including ablation studies and comparison to existing approaches. Our methodology is promising since the proposed five metrics quantify the inherent differences between clean and poisoned samples. Additionally, our detection method can be incrementally improved by appending more metrics that may be proposed to address future advanced attacks.
Federated learning (FL) as distributed machine learning has gained popularity as privacy-aware Machine Learning (ML) systems have emerged as a technique that prevents privacy leakage by building a global model and by conducting individualized training of decentralized edge clients on their own private data. The existing works, however, employ privacy mechanisms such as Secure Multiparty Computing (SMC), Differential Privacy (DP), etc. Which are immensely susceptible to interference, massive computational overhead, low accuracy, etc. With the increasingly broad deployment of FL systems, it is challenging to ensure fairness and maintain active client participation in FL systems. Very few works ensure reasonably satisfactory performances for the numerous diverse clients and fail to prevent potential bias against particular demographics in FL systems. The current efforts fail to strike a compromise between privacy, fairness, and model performance in FL systems and are vulnerable to a number of additional problems. In this paper, we provide a comprehensive survey stating the basic concepts of FL, the existing privacy challenges, techniques, and relevant works concerning privacy in FL. We also provide an extensive overview of the increasing fairness challenges, existing fairness notions, and the limited works that attempt both privacy and fairness in FL. By comprehensively describing the existing FL systems, we present the potential future directions pertaining to the challenges of privacy-preserving and fairness-aware FL systems.
The streaming model is an abstraction of computing over massive data streams, which is a popular way of dealing with large-scale modern data analysis. In this model, there is a stream of data points, one after the other. A streaming algorithm is only allowed one pass over the data stream, and the goal is to perform some analysis during the stream while using as small space as possible. Clustering problems (such as $k$-means and $k$-median) are fundamental unsupervised machine learning primitives, and streaming clustering algorithms have been extensively studied in the past. However, since data privacy becomes a central concern in many real-world applications, non-private clustering algorithms are not applicable in many scenarios. In this work, we provide the first differentially private streaming algorithms for $k$-means and $k$-median clustering of $d$-dimensional Euclidean data points over a stream with length at most $T$ using $poly(k,d,\log(T))$ space to achieve a {\it constant} multiplicative error and a $poly(k,d,\log(T))$ additive error. In particular, we present a differentially private streaming clustering framework which only requires an offline DP coreset algorithm as a blackbox. By plugging in existing DP coreset results via Ghazi, Kumar, Manurangsi 2020 and Kaplan, Stemmer 2018, we achieve (1) a $(1+\gamma)$-multiplicative approximation with $\tilde{O}_\gamma(poly(k,d,\log(T)))$ space for any $\gamma>0$, and the additive error is $poly(k,d,\log(T))$ or (2) an $O(1)$-multiplicative approximation with $\tilde{O}(k \cdot poly(d,\log(T)))$ space and $poly(k,d,\log(T))$ additive error. In addition, our algorithmic framework is also differentially private under the continual release setting, i.e., the union of outputs of our algorithms at every timestamp is always differentially private.
Budget-feasible procurement has been a major paradigm in mechanism design since its introduction by Singer (2010). An auctioneer (buyer) with a strict budget constraint is interested in buying goods or services from a group of strategic agents (sellers). In many scenarios it makes sense to allow the auctioneer to only partially buy what an agent offers, e.g., an agent might have multiple copies of an item to sell, they might offer multiple levels of a service, or they may be available to perform a task for any fraction of a specified time interval. Nevertheless, the focus of the related literature has been on settings where each agent's services are either fully acquired or not at all. The main reason for this, is that in settings with partial allocations like the ones mentioned, there are strong inapproximability results (see, e.g., Chan & Chen (2014), Anari et al. (2018)). Under the mild assumption of being able to afford each agent entirely, we are able to circumvent such results in this work. We design a polynomial-time, deterministic, truthful, budget-feasible $(2+\sqrt{3})$-approximation mechanism for the setting where each agent offers multiple levels of service and the auctioneer has a discrete separable concave valuation function. We then use this result to design a deterministic, truthful and budget-feasible mechanism for the setting where any fraction of a service can be acquired and the auctioneer's valuation function is separable concave (i.e., the sum of concave functions). The approximation ratio of this mechanism depends on how `nice' the concave functions are, and is $O(1)$ for valuation functions that are sums of $O(1)$-regular functions (e.g., functions like $\log(1+x)$). For the special case of a linear valuation function, we improve the best known approximation ratio for the problem from $1+\phi$ (by Klumper & Sch\"afer (2022)) to $2$.
Lately, differential privacy (DP) has been introduced in cooperative multiagent reinforcement learning (CMARL) to safeguard the agents' privacy against adversarial inference during knowledge sharing. Nevertheless, we argue that the noise introduced by DP mechanisms may inadvertently give rise to a novel poisoning threat, specifically in the context of private knowledge sharing during CMARL, which remains unexplored in the literature. To address this shortcoming, we present an adaptive, privacy-exploiting, and evasion-resilient localized poisoning attack (PeLPA) that capitalizes on the inherent DP-noise to circumvent anomaly detection systems and hinder the optimal convergence of the CMARL model. We rigorously evaluate our proposed PeLPA attack in diverse environments, encompassing both non-adversarial and multiple-adversarial contexts. Our findings reveal that, in a medium-scale environment, the PeLPA attack with attacker ratios of 20% and 40% can lead to an increase in average steps to goal by 50.69% and 64.41%, respectively. Furthermore, under similar conditions, PeLPA can result in a 1.4x and 1.6x computational time increase in optimal reward attainment and a 1.18x and 1.38x slower convergence for attacker ratios of 20% and 40%, respectively.
Uncertainty sampling is a prevalent active learning algorithm that queries sequentially the annotations of data samples which the current prediction model is uncertain about. However, the usage of uncertainty sampling has been largely heuristic: (i) There is no consensus on the proper definition of "uncertainty" for a specific task under a specific loss; (ii) There is no theoretical guarantee that prescribes a standard protocol to implement the algorithm, for example, how to handle the sequentially arrived annotated data under the framework of optimization algorithms such as stochastic gradient descent. In this work, we systematically examine uncertainty sampling algorithms under both stream-based and pool-based active learning. We propose a notion of equivalent loss which depends on the used uncertainty measure and the original loss function and establish that an uncertainty sampling algorithm essentially optimizes against such an equivalent loss. The perspective verifies the properness of existing uncertainty measures from two aspects: surrogate property and loss convexity. Furthermore, we propose a new notion for designing uncertainty measures called \textit{loss as uncertainty}. The idea is to use the conditional expected loss given the features as the uncertainty measure. Such an uncertainty measure has nice analytical properties and generality to cover both classification and regression problems, which enable us to provide the first generalization bound for uncertainty sampling algorithms under both stream-based and pool-based settings, in the full generality of the underlying model and problem. Lastly, we establish connections between certain variants of the uncertainty sampling algorithms with risk-sensitive objectives and distributional robustness, which can partly explain the advantage of uncertainty sampling algorithms when the sample size is small.
Deep reinforcement learning (RL) has shown immense potential for learning to control systems through data alone. However, one challenge deep RL faces is that the full state of the system is often not observable. When this is the case, the policy needs to leverage the history of observations to infer the current state. At the same time, differences between the training and testing environments makes it critical for the policy not to overfit to the sequence of observations it sees at training time. As such, there is an important balancing act between having the history encoder be flexible enough to extract relevant information, yet be robust to changes in the environment. To strike this balance, we look to the PID controller for inspiration. We assert the PID controller's success shows that only summing and differencing are needed to accumulate information over time for many control tasks. Following this principle, we propose two architectures for encoding history: one that directly uses PID features and another that extends these core ideas and can be used in arbitrary control tasks. When compared with prior approaches, our encoders produce policies that are often more robust and achieve better performance on a variety of tracking tasks. Going beyond tracking tasks, our policies achieve 1.7x better performance on average over previous state-of-the-art methods on a suite of high dimensional control tasks.
Governments and industries have widely adopted differential privacy as a measure to protect users' sensitive data, creating the need for new implementations of differentially private algorithms. In order to properly test and audit these algorithms, a suite of tools for testing the property of differential privacy is needed. In this work we expand this testing suite and introduce R\'enyiTester, an algorithm that can verify if a mechanism is R\'enyi differentially private. Our algorithm computes computes a lower bound of the R\'enyi divergence between the distributions of a mechanism on neighboring datasets, only requiring black-box access to samples from the audited mechanism. We test this approach on a variety of pure and R\'enyi differentially private mechanisms with diverse output spaces and show that R\'enyiTester detects bugs in mechanisms' implementations and design flaws. While detecting that a general mechanism is differentially private is known to be NP hard, we empirically show that tools like R\'enyiTester provide a way for researchers and engineers to decrease the risk of deploying mechanisms that expose users' privacy.
Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.