亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the field of robotics and automation, navigation systems based on Large Language Models (LLMs) have recently shown impressive performance. However, the security aspects of these systems have received relatively less attention. This paper pioneers the exploration of vulnerabilities in LLM-based navigation models in urban outdoor environments, a critical area given the technology's widespread application in autonomous driving, logistics, and emergency services. Specifically, we introduce a novel Navigational Prompt Suffix (NPS) Attack that manipulates LLM-based navigation models by appending gradient-derived suffixes to the original navigational prompt, leading to incorrect actions. We conducted comprehensive experiments on an LLMs-based navigation model that employs various LLMs for reasoning. Our results, derived from the Touchdown and Map2Seq street-view datasets under both few-shot learning and fine-tuning configurations, demonstrate notable performance declines across three metrics in the face of both white-box and black-box attacks. These results highlight the generalizability and transferability of the NPS Attack, emphasizing the need for enhanced security in LLM-based navigation systems. As an initial countermeasure, we propose the Navigational Prompt Engineering (NPE) Defense strategy, concentrating on navigation-relevant keywords to reduce the impact of adversarial suffixes. While initial findings indicate that this strategy enhances navigational safety, there remains a critical need for the wider research community to develop stronger defense methods to effectively tackle the real-world challenges faced by these systems.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 傳感器 · 邊界框 · Performer · 數據集 ·
2024 年 3 月 27 日

Data annotation in autonomous vehicles is a critical step in the development of Deep Neural Network (DNN) based models or the performance evaluation of the perception system. This often takes the form of adding 3D bounding boxes on time-sequential and registered series of point-sets captured from active sensors like Light Detection and Ranging (LiDAR) and Radio Detection and Ranging (RADAR). When annotating multiple active sensors, there is a need to motion compensate and translate the points to a consistent coordinate frame and timestamp respectively. However, highly dynamic objects pose a unique challenge, as they can appear at different timestamps in each sensor's data. Without knowing the speed of the objects, their position appears to be different in different sensor outputs. Thus, even after motion compensation, highly dynamic objects are not matched from multiple sensors in the same frame, and human annotators struggle to add unique bounding boxes that capture all objects. This article focuses on addressing this challenge, primarily within the context of Scania collected datasets. The proposed solution takes a track of an annotated object as input and uses the Moving Horizon Estimation (MHE) to robustly estimate its speed. The estimated speed profile is utilized to correct the position of the annotated box and add boxes to object clusters missed by the original annotation.

While auxiliary information has become a key to enhancing Large Language Models (LLMs), relatively little is known about how LLMs merge these contexts, specifically contexts generated by LLMs and those retrieved from external sources. To investigate this, we formulate a systematic framework to identify whether LLMs' responses, derived from the integration of generated and retrieved contexts, are attributed to either generated or retrieved contexts. To easily trace the origin of the response, we construct datasets with conflicting contexts, i.e., each question is paired with both generated and retrieved contexts, yet only one of them contains the correct answer. Our experiments reveal a significant bias in several LLMs (GPT-4/3.5 and Llama2) to favor generated contexts, even when they provide incorrect information. We further identify two key factors contributing to this bias: i) contexts generated by LLMs typically show greater similarity to the questions, increasing their likelihood of being selected; ii) the segmentation process used in retrieved contexts disrupts their completeness, thereby hindering their full utilization in LLMs. Our analysis enhances the understanding of how LLMs merge diverse contexts, offering valuable insights for advancing current augmentation methods for LLMs.

We demonstrate a substantial gap between the privacy guarantees of the Adaptive Batch Linear Queries (ABLQ) mechanism under different types of batch sampling: (i) Shuffling, and (ii) Poisson subsampling; the typical analysis of Differentially Private Stochastic Gradient Descent (DP-SGD) follows by interpreting it as a post-processing of ABLQ. While shuffling based DP-SGD is more commonly used in practical implementations, it is neither analytically nor numerically amenable to easy privacy analysis. On the other hand, Poisson subsampling based DP-SGD is challenging to scalably implement, but has a well-understood privacy analysis, with multiple open-source numerically tight privacy accountants available. This has led to a common practice of using shuffling based DP-SGD in practice, but using the privacy analysis for the corresponding Poisson subsampling version. Our result shows that there can be a substantial gap between the privacy analysis when using the two types of batch sampling, and thus advises caution in reporting privacy parameters for DP-SGD.

As AI becomes more integral in our lives, the need for transparency and responsibility grows. While natural language explanations (NLEs) are vital for clarifying the reasoning behind AI decisions, evaluating them through human judgments is complex and resource-intensive due to subjectivity and the need for fine-grained ratings. This study explores the alignment between ChatGPT and human assessments across multiple scales (i.e., binary, ternary, and 7-Likert scale). We sample 300 data instances from three NLE datasets and collect 900 human annotations for both informativeness and clarity scores as the text quality measurement. We further conduct paired comparison experiments under different ranges of subjectivity scores, where the baseline comes from 8,346 human annotations. Our results show that ChatGPT aligns better with humans in more coarse-grained scales. Also, paired comparisons and dynamic prompting (i.e., providing semantically similar examples in the prompt) improve the alignment. This research advances our understanding of large language models' capabilities to assess the text explanation quality in different configurations for responsible AI development.

A typical benchmark dataset for recommender system (RecSys) evaluation consists of user-item interactions generated on a platform within a time period. The interaction generation mechanism partially explains why a user interacts with (e.g., like, purchase, rate) an item, and the context of when a particular interaction happened. In this study, we conduct a meticulous analysis of the MovieLens dataset and explain the potential impact of using the dataset for evaluating recommendation algorithms. We make a few main findings from our analysis. First, there are significant differences in user interactions at the different stages when a user interacts with the MovieLens platform. The early interactions largely define the user portrait which affects the subsequent interactions. Second, user interactions are highly affected by the candidate movies that are recommended by the platform's internal recommendation algorithm(s). Third, changing the order of user interactions makes it more difficult for sequential algorithms to capture the progressive interaction process. We further discuss the discrepancy between the interaction generation mechanism that is employed by the MovieLens system and that of typical real-world recommendation scenarios. In summary, the MovieLens platform demonstrates an efficient and effective way of collecting user preferences to address cold-starts. However, models that achieve excellent recommendation accuracy on the MovieLens dataset may not demonstrate superior performance in practice, for at least two kinds of differences: (i) the differences in the contexts of user-item interaction generation, and (ii) the differences in user knowledge about the item collections. While results on MovieLens can be useful as a reference, they should not be solely relied upon as the primary justification for the effectiveness of a recommendation system model.

Variational quantum algorithms are gaining attention as an early application of Noisy Intermediate-Scale Quantum (NISQ) devices. One of the main problems of variational methods lies in the phenomenon of Barren Plateaus, present in the optimization of variational parameters. Adding geometric inductive bias to the quantum models has been proposed as a potential solution to mitigate this problem, leading to a new field called Geometric Quantum Machine Learning. In this work, an equivariant architecture for variational quantum classifiers is introduced to create a label-invariant model for image classification with $C_4$ rotational label symmetry. The equivariant circuit is benchmarked against two different architectures, and it is experimentally observed that the geometric approach boosts the model's performance. Finally, a classical equivariant convolution operation is proposed to extend the quantum model for the processing of larger images, employing the resources available in NISQ devices.

A flurry of recent work has demonstrated that pre-trained large language models (LLMs) can be effective task planners for a variety of single-robot tasks. The planning performance of LLMs is significantly improved via prompting techniques, such as in-context learning or re-prompting with state feedback, placing new importance on the token budget for the context window. An under-explored but natural next direction is to investigate LLMs as multi-robot task planners. However, long-horizon, heterogeneous multi-robot planning introduces new challenges of coordination while also pushing up against the limits of context window length. It is therefore critical to find token-efficient LLM planning frameworks that are also able to reason about the complexities of multi-robot coordination. In this work, we compare the task success rate and token efficiency of four multi-agent communication frameworks (centralized, decentralized, and two hybrid) as applied to four coordination-dependent multi-agent 2D task scenarios for increasing numbers of agents. We find that a hybrid framework achieves better task success rates across all four tasks and scales better to more agents. We further demonstrate the hybrid frameworks in 3D simulations where the vision-to-text problem and dynamical errors are considered. See our project website //yongchao98.github.io/MIT-REALM-Multi-Robot/ for prompts, videos, and code.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.

Language model pre-training has proven to be useful in learning universal language representations. As a state-of-the-art language model pre-training model, BERT (Bidirectional Encoder Representations from Transformers) has achieved amazing results in many language understanding tasks. In this paper, we conduct exhaustive experiments to investigate different fine-tuning methods of BERT on text classification task and provide a general solution for BERT fine-tuning. Finally, the proposed solution obtains new state-of-the-art results on eight widely-studied text classification datasets.

北京阿比特科技有限公司