亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The robust generalization of models to rare, in-distribution (ID) samples drawn from the long tail of the training distribution and to out-of-training-distribution (OOD) samples is one of the major challenges of current deep learning methods. For image classification, this manifests in the existence of adversarial attacks, the performance drops on distorted images, and a lack of generalization to concepts such as sketches. The current understanding of generalization in neural networks is very limited, but some biases that differentiate models from human vision have been identified and might be causing these limitations. Consequently, several attempts with varying success have been made to reduce these biases during training to improve generalization. We take a step back and sanity-check these attempts. Fixing the architecture to the well-established ResNet-50, we perform a large-scale study on 48 ImageNet models obtained via different training methods to understand how and if these biases - including shape bias, spectral biases, and critical bands - interact with generalization. Our extensive study results reveal that contrary to previous findings, these biases are insufficient to accurately predict the generalization of a model holistically. We provide access to all checkpoints and evaluation code at //github.com/paulgavrikov/biases_vs_generalization

相關內容

Noisy labels significantly hinder the accuracy and generalization of machine learning models, particularly due to ambiguous instance features. Traditional techniques that attempt to correct noisy labels directly, such as those using transition matrices, often fail to address the inherent complexities of the problem sufficiently. In this paper, we introduce EchoAlign, a transformative paradigm shift in learning from noisy labels. Instead of focusing on label correction, EchoAlign treats noisy labels ($\tilde{Y}$) as accurate and modifies corresponding instance features ($X$) to achieve better alignment with $\tilde{Y}$. EchoAlign's core components are (1) EchoMod: Employing controllable generative models, EchoMod precisely modifies instances while maintaining their intrinsic characteristics and ensuring alignment with the noisy labels. (2) EchoSelect: Instance modification inevitably introduces distribution shifts between training and test sets. EchoSelect maintains a significant portion of clean original instances to mitigate these shifts. It leverages the distinct feature similarity distributions between original and modified instances as a robust tool for accurate sample selection. This integrated approach yields remarkable results. In environments with 30% instance-dependent noise, even at 99% selection accuracy, EchoSelect retains nearly twice the number of samples compared to the previous best method. Notably, on three datasets, EchoAlign surpasses previous state-of-the-art techniques with a substantial improvement.

Recent advancements in pre-trained large foundation models (LFM) have yielded significant breakthroughs across various domains, including natural language processing and computer vision. These models have been particularly impactful in the domain of medical diagnostic tasks. With abundant unlabeled data, an LFM has been developed for fundus images using the Vision Transformer (VIT) and a self-supervised learning framework. This LFM has shown promising performance in fundus disease diagnosis across multiple datasets. On the other hand, deep learning models have long been challenged by dataset quality issues, such as image quality and dataset bias. To investigate the influence of data quality on LFM, we conducted explorations in two fundus diagnosis tasks using datasets of varying quality. Specifically, we explored the following questions: Is LFM more robust to image quality? Is LFM affected by dataset bias? Can fine-tuning techniques alleviate these effects? Our investigation found that LFM exhibits greater resilience to dataset quality issues, including image quality and dataset bias, compared to typical convolutional networks. Furthermore, we discovered that overall fine-tuning is an effective adapter for LFM to mitigate the impact of dataset quality issues.

We revisit the fundamental problem of learning with distribution shift, in which a learner is given labeled samples from training distribution $D$, unlabeled samples from test distribution $D'$ and is asked to output a classifier with low test error. The standard approach in this setting is to bound the loss of a classifier in terms of some notion of distance between $D$ and $D'$. These distances, however, seem difficult to compute and do not lead to efficient algorithms. We depart from this paradigm and define a new model called testable learning with distribution shift, where we can obtain provably efficient algorithms for certifying the performance of a classifier on a test distribution. In this model, a learner outputs a classifier with low test error whenever samples from $D$ and $D'$ pass an associated test; moreover, the test must accept if the marginal of $D$ equals the marginal of $D'$. We give several positive results for learning well-studied concept classes such as halfspaces, intersections of halfspaces, and decision trees when the marginal of $D$ is Gaussian or uniform on $\{\pm 1\}^d$. Prior to our work, no efficient algorithms for these basic cases were known without strong assumptions on $D'$. For halfspaces in the realizable case (where there exists a halfspace consistent with both $D$ and $D'$), we combine a moment-matching approach with ideas from active learning to simulate an efficient oracle for estimating disagreement regions. To extend to the non-realizable setting, we apply recent work from testable (agnostic) learning. More generally, we prove that any function class with low-degree $L_2$-sandwiching polynomial approximators can be learned in our model. We apply constructions from the pseudorandomness literature to obtain the required approximators.

Graph neural networks (GNN) are deep learning architectures for graphs. Essentially, a GNN is a distributed message passing algorithm, which is controlled by parameters learned from data. It operates on the vertices of a graph: in each iteration, vertices receive a message on each incoming edge, aggregate these messages, and then update their state based on their current state and the aggregated messages. The expressivity of GNNs can be characterised in terms of certain fragments of first-order logic with counting and the Weisfeiler-Lehman algorithm. The core GNN architecture comes in two different versions. In the first version, a message only depends on the state of the source vertex, whereas in the second version it depends on the states of the source and target vertices. In practice, both of these versions are used, but the theory of GNNs so far mostly focused on the first one. On the logical side, the two versions correspond to two fragments of first-order logic with counting that we call modal and guarded. The question whether the two versions differ in their expressivity has been mostly overlooked in the GNN literature and has only been asked recently (Grohe, LICS'23). We answer this question here. It turns out that the answer is not as straightforward as one might expect. By proving that the modal and guarded fragment of first-order logic with counting have the same expressivity over labelled undirected graphs, we show that in a non-uniform setting the two GNN versions have the same expressivity. However, we also prove that in a uniform setting the second version is strictly more expressive.

Going beyond mere fine-tuning of vision-language models (VLMs), learnable prompt tuning has emerged as a promising, resource-efficient alternative. Despite their potential, effectively learning prompts faces the following challenges: (i) training in a low-shot scenario results in overfitting, limiting adaptability and yielding weaker performance on newer classes or datasets; (ii) prompt-tuning's efficacy heavily relies on the label space, with decreased performance in large class spaces, signaling potential gaps in bridging image and class concepts. In this work, we ask the question if better text semantics can help address these concerns. In particular, we introduce a prompt-tuning method that leverages class descriptions obtained from large language models (LLMs). Our approach constructs part-level description-guided views of both image and text features, which are subsequently aligned to learn more generalizable prompts. Our comprehensive experiments, conducted across 11 benchmark datasets, outperform established methods, demonstrating substantial improvements.

Large language models (LLMs) perform well at a myriad of tasks, but explaining the processes behind this performance is a challenge. This paper investigates whether LLMs can give faithful high-level explanations of their own internal processes. To explore this, we introduce a dataset, ArticulateRules, of few-shot text-based classification tasks generated by simple rules. Each rule is associated with a simple natural-language explanation. We test whether models that have learned to classify inputs competently (both in- and out-of-distribution) are able to articulate freeform natural language explanations that match their classification behavior. Our dataset can be used for both in-context and finetuning evaluations. We evaluate a range of LLMs, demonstrating that articulation accuracy varies considerably between models, with a particularly sharp increase from GPT-3 to GPT-4. We then investigate whether we can improve GPT-3's articulation accuracy through a range of methods. GPT-3 completely fails to articulate 7/10 rules in our test, even after additional finetuning on correct explanations. We release our dataset, ArticulateRules, which can be used to test self-explanation for LLMs trained either in-context or by finetuning.

Due to increasing interest in adapting models on resource-constrained edges, parameter-efficient transfer learning has been widely explored. Among various methods, Visual Prompt Tuning (VPT), prepending learnable prompts to input space, shows competitive fine-tuning performance compared to training of full network parameters. However, VPT increases the number of input tokens, resulting in additional computational overhead. In this paper, we analyze the impact of the number of prompts on fine-tuning performance and self-attention operation in a vision transformer architecture. Through theoretical and empirical analysis we show that adding more prompts does not lead to linear performance improvement. Further, we propose a Prompt Condensation (PC) technique that aims to prevent performance degradation from using a small number of prompts. We validate our methods on FGVC and VTAB-1k tasks and show that our approach reduces the number of prompts by ~70% while maintaining accuracy.

Causal inference from observational data following the restricted structural causal models (SCM) framework hinges largely on the asymmetry between cause and effect from the data generating mechanisms, such as non-Gaussianity or non-linearity. This methodology can be adapted to stationary time series, yet inferring causal relationships from nonstationary time series remains a challenging task. In this work, we propose a new class of restricted SCM, via a time-varying filter and stationary noise, and exploit the asymmetry from nonstationarity for causal identification in both bivariate and network settings. We propose efficient procedures by leveraging powerful estimates of the bivariate evolutionary spectra for slowly varying processes. Various synthetic and real datasets that involve high-order and non-smooth filters are evaluated to demonstrate the effectiveness of our proposed methodology.

Feature attribution methods are popular in interpretable machine learning. These methods compute the attribution of each input feature to represent its importance, but there is no consensus on the definition of "attribution", leading to many competing methods with little systematic evaluation, complicated in particular by the lack of ground truth attribution. To address this, we propose a dataset modification procedure to induce such ground truth. Using this procedure, we evaluate three common methods: saliency maps, rationales, and attentions. We identify several deficiencies and add new perspectives to the growing body of evidence questioning the correctness and reliability of these methods applied on datasets in the wild. We further discuss possible avenues for remedy and recommend new attribution methods to be tested against ground truth before deployment. The code is available at \url{//github.com/YilunZhou/feature-attribution-evaluation}.

Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.

北京阿比特科技有限公司