COVID Long Haul (CLH) is an emerging chronic illness with varied patient experiences. Our understanding of CLH is often limited to data from electronic health records (EHRs), such as diagnoses or problem lists, which do not capture the volatility and severity of symptoms or their impact. To better understand the unique presentation of CLH, we conducted a 3-month long cohort study with 14 CLH patients, collecting objective (EHR, daily Fitbit logs) and subjective (weekly surveys, interviews) data. Our findings reveal a complex presentation of symptoms, associated uncertainty, and the ensuing impact CLH has on patients' personal and professional lives. We identify patient needs, practices, and challenges around adhering to clinical recommendations, engaging with health data, and establishing "new normals" post COVID. We reflect on the potential found at the intersection of these various data streams and the persuasive heuristics possible when designing for this new population and their specific needs.
Named Entity Recognition (NER) is a Natural Language Processing technique for extracting information from textual documents. However, much of the existing research on NER has been centered around English-language documents, leaving a gap in the availability of datasets tailored to the financial domain in Portuguese. This study addresses the need for NER within the financial domain, focusing on Portuguese-language texts extracted from earnings call transcriptions of Brazilian banks. By curating a comprehensive dataset comprising 384 transcriptions and leveraging weak supervision techniques for annotation, we evaluate the performance of monolingual models trained on Portuguese (BERTimbau and PTT5) and multilingual models (mBERT and mT5). Notably, we introduce a novel approach that reframes the token classification task as a text generation problem, enabling fine-tuning and evaluation of T5 models. Following the fine-tuning of the models, we conduct an evaluation on the test dataset, employing performance and error metrics. Our findings reveal that BERT-based models consistently outperform T5-based models. Furthermore, while the multilingual models exhibit comparable macro F1-scores, BERTimbau demonstrates superior performance over PTT5. A manual analysis of sentences generated by PTT5 and mT5 unveils a degree of similarity ranging from 0.89 to 1.0, between the original and generated sentences. However, critical errors emerge as both models exhibit discrepancies, such as alterations to monetary and percentage values, underscoring the importance of accuracy and consistency in the financial domain. Despite these challenges, PTT5 and mT5 achieve impressive macro F1-scores of 98.52% and 98.85%, respectively, with our proposed approach. Furthermore, our study sheds light on notable disparities in memory and time consumption for inference across the models.
Visual Odometry (VO) is one of the fundamental tasks in computer vision for robotics. However, its performance is deeply affected by High Dynamic Range (HDR) scenes, omnipresent outdoor. While new Automatic-Exposure (AE) approaches to mitigate this have appeared, their comparison in a reproducible manner is problematic. This stems from the fact that the behavior of AE depends on the environment, and it affects the image acquisition process. Consequently, AE has traditionally only been benchmarked in an online manner, making the experiments non-reproducible. To solve this, we propose a new methodology based on an emulator that can generate images at any exposure time. It leverages BorealHDR, a unique multi-exposure stereo dataset collected over 10 km, on 55 trajectories with challenging illumination conditions. Moreover, it includes lidar-inertial-based global maps with pose estimation for each image frame as well as Global Navigation Satellite System (GNSS) data, for comparison. We show that using these images acquired at different exposure times, we can emulate realistic images, keeping a Root-Mean-Square Error (RMSE) below 1.78 % compared to ground truth images. To demonstrate the practicality of our approach for offline benchmarking, we compared three state-of-the-art AE algorithms on key elements of Visual Simultaneous Localization And Mapping (VSLAM) pipeline, against four baselines. Consequently, reproducible evaluation of AE is now possible, speeding up the development of future approaches. Our code and dataset are available online at this link: //github.com/norlab-ulaval/BorealHDR
The Segment Anything Model (SAM) has recently emerged as a groundbreaking foundation model for prompt-driven image segmentation tasks. However, both the original SAM and its medical variants require slice-by-slice manual prompting of target structures, which directly increase the burden for applications. Despite attempts of auto-prompting to turn SAM into a fully automatic manner, it still exhibits subpar performance and lacks of reliability especially in the field of medical imaging. In this paper, we propose UR-SAM, an uncertainty rectified SAM framework to enhance the reliability for auto-prompting medical image segmentation. Building upon a localization framework for automatic prompt generation, our method incorporates a prompt augmentation module to obtain a series of input prompts for SAM for uncertainty estimation and an uncertainty-based rectification module to further utilize the distribution of estimated uncertainty to improve the segmentation performance. Extensive experiments on two public 3D medical datasets covering the segmentation of 35 organs demonstrate that without supplementary training or fine-tuning, our method further improves the segmentation performance with up to 10.7 % and 13.8 % in dice similarity coefficient, demonstrating efficiency and broad capabilities for medical image segmentation without manual prompting.
Spectrum-Based Fault Localization (SBFL) is a technique to be used during debugging, the premise of which is that, based on the test case outcomes and code coverage, faulty code elements can be automatically detected. SBFL is popular among researchers because it is lightweight and easy to implement, and there is a lot of potential in it when it comes to research that aims to improve its effectiveness. Despite this, the technique cannot be found in contemporary development and debugging tools, only a handful of research prototypes are available. Reasons for this can be multiple, including the algortihms' sub-optimal effectiveness and other technical weaknesses. But, also the lack of clear functional and non-functional requirements for such a tool, either standalone or integrated into IDEs. In this paper, we attempt to provide such a list in form of recommendations, based on surveying the most popular SBFL tools and on our own researchers' and tool builders' experience.
Average Treatment Effect (ATE) estimation is a well-studied problem in causal inference. However, it does not necessarily capture the heterogeneity in the data, and several approaches have been proposed to tackle the issue, including estimating the Quantile Treatment Effects. In the finite population setting containing $n$ individuals, with treatment and control values denoted by the potential outcome vectors $\mathbf{a}, \mathbf{b}$, much of the prior work focused on estimating median$(\mathbf{a}) -$ median$(\mathbf{b})$, where median($\mathbf x$) denotes the median value in the sorted ordering of all the values in vector $\mathbf x$. It is known that estimating the difference of medians is easier than the desired estimand of median$(\mathbf{a-b})$, called the Median Treatment Effect (MTE). The fundamental problem of causal inference -- for every individual $i$, we can only observe one of the potential outcome values, i.e., either the value $a_i$ or $b_i$, but not both, makes estimating MTE particularly challenging. In this work, we argue that MTE is not estimable and detail a novel notion of approximation that relies on the sorted order of the values in $\mathbf{a-b}$. Next, we identify a quantity called variability that exactly captures the complexity of MTE estimation. By drawing connections to instance-optimality studied in theoretical computer science, we show that every algorithm for estimating the MTE obtains an approximation error that is no better than the error of an algorithm that computes variability. Finally, we provide a simple linear time algorithm for computing the variability exactly. Unlike much prior work, a particular highlight of our work is that we make no assumptions about how the potential outcome vectors are generated or how they are correlated, except that the potential outcome values are $k$-ary, i.e., take one of $k$ discrete values.
The adoption of Deep Neural Networks (DNNs) has greatly benefited Natural Language Processing (NLP) during the past decade. However, the demands of long document analysis are quite different from those of shorter texts, while the ever increasing size of documents uploaded online renders automated understanding of lengthy texts a critical issue. Relevant applications include automated Web mining, legal document review, medical records analysis, financial reports analysis, contract management, environmental impact assessment, news aggregation, etc. Despite the relatively recent development of efficient algorithms for analyzing long documents, practical tools in this field are currently flourishing. This article serves as an entry point into this dynamic domain and aims to achieve two objectives. First of all, it provides an introductory overview of the relevant neural building blocks, serving as a concise tutorial for the field. Secondly, it offers a brief examination of the current state-of-the-art in two key long document analysis tasks: document classification and document summarization. Sentiment analysis for long texts is also covered, since it is typically treated as a particular case of document classification. Consequently, this article presents an introductory exploration of document-level analysis, addressing the primary challenges, concerns, and existing solutions. Finally, it offers a concise definition of "long text/document", presents an original overarching taxonomy of common deep neural methods for long document analysis and lists publicly available annotated datasets that can facilitate further research in this area.
Large Language Models (LLMs) are demonstrating outstanding potential for tasks such as text generation, summarization, and classification. Given that such models are trained on a humongous amount of online knowledge, we hypothesize that LLMs can assess whether driving scenarios generated by autonomous driving testing techniques are realistic, i.e., being aligned with real-world driving conditions. To test this hypothesis, we conducted an empirical evaluation to assess whether LLMs are effective and robust in performing the task. This reality check is an important step towards devising LLM-based autonomous driving testing techniques. For our empirical evaluation, we selected 64 realistic scenarios from \deepscenario--an open driving scenario dataset. Next, by introducing minor changes to them, we created 512 additional realistic scenarios, to form an overall dataset of 576 scenarios. With this dataset, we evaluated three LLMs (\gpt, \llama, and \mistral) to assess their robustness in assessing the realism of driving scenarios. Our results show that: (1) Overall, \gpt achieved the highest robustness compared to \llama and \mistral, consistently throughout almost all scenarios, roads, and weather conditions; (2) \mistral performed the worst consistently; (3) \llama achieved good results under certain conditions; and (4) roads and weather conditions do influence the robustness of the LLMs.
Big models have achieved revolutionary breakthroughs in the field of AI, but they might also pose potential concerns. Addressing such concerns, alignment technologies were introduced to make these models conform to human preferences and values. Despite considerable advancements in the past year, various challenges lie in establishing the optimal alignment strategy, such as data cost and scalable oversight, and how to align remains an open question. In this survey paper, we comprehensively investigate value alignment approaches. We first unpack the historical context of alignment tracing back to the 1920s (where it comes from), then delve into the mathematical essence of alignment (what it is), shedding light on the inherent challenges. Following this foundation, we provide a detailed examination of existing alignment methods, which fall into three categories: Reinforcement Learning, Supervised Fine-Tuning, and In-context Learning, and demonstrate their intrinsic connections, strengths, and limitations, helping readers better understand this research area. In addition, two emerging topics, personal alignment, and multimodal alignment, are also discussed as novel frontiers in this field. Looking forward, we discuss potential alignment paradigms and how they could handle remaining challenges, prospecting where future alignment will go.
Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.