This paper explores the evolving relationship between clinician trust in LLMs, the transformation of data sources from predominantly human-generated to AI-generated content, and the subsequent impact on the precision of LLMs and clinician competence. One of the primary concerns identified is the potential feedback loop that arises as LLMs become more reliant on their outputs for learning, which may lead to a degradation in output quality and a reduction in clinician skills due to decreased engagement with fundamental diagnostic processes. While theoretical at this stage, this feedback loop poses a significant challenge as the integration of LLMs in healthcare deepens, emphasizing the need for proactive dialogue and strategic measures to ensure the safe and effective use of LLM technology. A key takeaway from our investigation is the critical role of user expertise and the necessity for a discerning approach to trusting and validating LLM outputs. The paper highlights how expert users, particularly clinicians, can leverage LLMs to enhance productivity by offloading routine tasks while maintaining a critical oversight to identify and correct potential inaccuracies in AI-generated content. This balance of trust and skepticism is vital for ensuring that LLMs augment rather than undermine the quality of patient care. Moreover, we delve into the potential risks associated with LLMs' self-referential learning loops and the deskilling of healthcare professionals. The risk of LLMs operating within an echo chamber, where AI-generated content feeds into the learning algorithms, threatens the diversity and quality of the data pool, potentially entrenching biases and reducing the efficacy of LLMs.
This study investigates the forecasting accuracy of human experts versus Large Language Models (LLMs) in the retail sector, particularly during standard and promotional sales periods. Utilizing a controlled experimental setup with 123 human forecasters and five LLMs, including ChatGPT4, ChatGPT3.5, Bard, Bing, and Llama2, we evaluated forecasting precision through Mean Absolute Percentage Error. Our analysis centered on the effect of the following factors on forecasters performance: the supporting statistical model (baseline and advanced), whether the product was on promotion, and the nature of external impact. The findings indicate that LLMs do not consistently outperform humans in forecasting accuracy and that advanced statistical forecasting models do not uniformly enhance the performance of either human forecasters or LLMs. Both human and LLM forecasters exhibited increased forecasting errors, particularly during promotional periods and under the influence of positive external impacts. Our findings call for careful consideration when integrating LLMs into practical forecasting processes.
This paper investigates the application of the transformer architecture in protein folding, as exemplified by DeepMind's AlphaFold project, and its implications for the understanding of large language models as models of language. The prevailing discourse often assumes a ready-made analogy between proteins -- encoded as sequences of amino acids -- and natural language -- encoded as sequences of discrete symbols. Instead of assuming as given the linguistic structure of proteins, we critically evaluate this analogy to assess the kind of knowledge-making afforded by the transformer architecture. We first trace the analogy's emergence and historical development, carving out the influence of structural linguistics on structural biology beginning in the mid-20th century. We then examine three often overlooked pre-processing steps essential to the transformer architecture, including subword tokenization, word embedding, and positional encoding, to demonstrate its regime of representation based on continuous, high-dimensional vector spaces, which departs from the discrete, semantically demarcated symbols of language. The successful deployment of transformers in protein folding, we argue, discloses what we consider a non-linguistic approach to token processing intrinsic to the architecture. We contend that through this non-linguistic processing, the transformer architecture carves out unique epistemological territory and produces a new class of knowledge, distinct from established domains. We contend that our search for intelligent machines has to begin with the shape, rather than the place, of intelligence. Consequently, the emerging field of critical AI studies should take methodological inspiration from the history of science in its quest to conceptualize the contributions of artificial intelligence to knowledge-making, within and beyond the domain-specific sciences.
This paper focuses on the integration of generative techniques into spatial-temporal data mining, considering the significant growth and diverse nature of spatial-temporal data. With the advancements in RNNs, CNNs, and other non-generative techniques, researchers have explored their application in capturing temporal and spatial dependencies within spatial-temporal data. However, the emergence of generative techniques such as LLMs, SSL, Seq2Seq and diffusion models has opened up new possibilities for enhancing spatial-temporal data mining further. The paper provides a comprehensive analysis of generative technique-based spatial-temporal methods and introduces a standardized framework specifically designed for the spatial-temporal data mining pipeline. By offering a detailed review and a novel taxonomy of spatial-temporal methodology utilizing generative techniques, the paper enables a deeper understanding of the various techniques employed in this field. Furthermore, the paper highlights promising future research directions, urging researchers to delve deeper into spatial-temporal data mining. It emphasizes the need to explore untapped opportunities and push the boundaries of knowledge to unlock new insights and improve the effectiveness and efficiency of spatial-temporal data mining. By integrating generative techniques and providing a standardized framework, the paper contributes to advancing the field and encourages researchers to explore the vast potential of generative techniques in spatial-temporal data mining.
The surgical intervention is crucial to patient healthcare, and many studies have developed advanced algorithms to provide understanding and decision-making assistance for surgeons. Despite great progress, these algorithms are developed for a single specific task and scenario, and in practice require the manual combination of different functions, thus limiting the applicability. Thus, an intelligent and versatile surgical assistant is expected to accurately understand the surgeon's intentions and accordingly conduct the specific tasks to support the surgical process. In this work, by leveraging advanced multimodal large language models (MLLMs), we propose a Versatile Surgery Assistant (VS-Assistant) that can accurately understand the surgeon's intention and complete a series of surgical understanding tasks, e.g., surgical scene analysis, surgical instrument detection, and segmentation on demand. Specifically, to achieve superior surgical multimodal understanding, we devise a mixture of projectors (MOP) module to align the surgical MLLM in VS-Assistant to balance the natural and surgical knowledge. Moreover, we devise a surgical Function-Calling Tuning strategy to enable the VS-Assistant to understand surgical intentions, and thus make a series of surgical function calls on demand to meet the needs of the surgeons. Extensive experiments on neurosurgery data confirm that our VS-Assistant can understand the surgeon's intention more accurately than the existing MLLM, resulting in overwhelming performance in textual analysis and visual tasks. Source code and models will be made public.
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.
Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.
A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.
Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.