亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A common forecasting setting in real world applications considers a set of possibly heterogeneous time series of the same domain. Due to different properties of each time series such as length, obtaining forecasts for each individual time series in a straight-forward way is challenging. This paper proposes a general framework utilizing a similarity measure in Dynamic Time Warping to find similar time series to build neighborhoods in a k-Nearest Neighbor fashion, and improve forecasts of possibly simple models by averaging. Several ways of performing the averaging are suggested, and theoretical arguments underline the usefulness of averaging for forecasting. Additionally, diagnostics tools are proposed allowing a deep understanding of the procedure.

相關內容

Contemporary deep learning models have demonstrated promising results across various applications within seismology and earthquake engineering. These models rely primarily on utilizing ground motion records for tasks such as earthquake event classification, localization, earthquake early warning systems, and structural health monitoring. However, the extent to which these models effectively learn from these complex time-series signals has not been thoroughly analyzed. In this study, our objective is to evaluate the degree to which auxiliary information, such as seismic phase arrival times or seismic station distribution within a network, dominates the process of deep learning from ground motion records, potentially hindering its effectiveness. We perform a hyperparameter search on two deep learning models to assess their effectiveness in deep learning from ground motion records while also examining the impact of auxiliary information on model performance. Experimental results reveal a strong reliance on the highly correlated P and S phase arrival information. Our observations highlight a potential gap in the field, indicating an absence of robust methodologies for deep learning of single-station ground motion recordings independent of any auxiliary information.

Customizable 3D avatar-based facial expression stimuli may improve user engagement in behavioral biomarker discovery and therapeutic intervention for autism, Alzheimer's disease, facial palsy, and more. However, there is a lack of customizable avatar-based stimuli with Facial Action Coding System (FACS) action unit (AU) labels. Therefore, this study focuses on (1) FACS-labeled, customizable avatar-based expression stimuli for maintaining subjects' engagement, (2) learning-based measurements that quantify subjects' facial responses to such stimuli, and (3) validation of constructs represented by stimulus-measurement pairs. We propose Customizable Avatars with Dynamic Facial Action Coded Expressions (CADyFACE) labeled with AUs by a certified FACS expert. To measure subjects' AUs in response to CADyFACE, we propose a novel Beta-guided Correlation and Multi-task Expression learning neural network (BeCoME-Net) for multi-label AU detection. The beta-guided correlation loss encourages feature correlation with AUs while discouraging correlation with subject identities for improved generalization. We train BeCoME-Net for unilateral and bilateral AU detection and compare with state-of-the-art approaches. To assess construct validity of CADyFACE and BeCoME-Net, twenty healthy adult volunteers complete expression recognition and mimicry tasks in an online feasibility study while webcam-based eye-tracking and video are collected. We test validity of multiple constructs, including face preference during recognition and AUs during mimicry.

Dynamic density estimation is ubiquitous in many applications, including computer vision and signal processing. One popular method to tackle this problem is the "sliding window" kernel density estimator. There exist various implementations of this method that use heuristically defined weight sequences for the observed data. The weight sequence, however, is a key aspect of the estimator affecting the tracking performance significantly. In this work, we study the exact mean integrated squared error (MISE) of "sliding window" Gaussian Kernel Density Estimators for evolving Gaussian densities. We provide a principled guide for choosing the optimal weight sequence by theoretically characterizing the exact MISE, which can be formulated as constrained quadratic programming. We present empirical evidence with synthetic datasets to show that our weighting scheme indeed improves the tracking performance compared to heuristic approaches.

The capability to generate simulation-ready garment models from 3D shapes of clothed humans will significantly enhance the interpretability of captured geometry of real garments, as well as their faithful reproduction in the virtual world. This will have notable impact on fields like shape capture in social VR, and virtual try-on in the fashion industry. To align with the garment modeling process standardized by the fashion industry as well as cloth simulation softwares, it is required to recover 2D patterns. This involves an inverse garment design problem, which is the focus of our work here: Starting with an arbitrary target garment geometry, our system estimates an animatable garment model by automatically adjusting its corresponding 2D template pattern, along with the material parameters of the physics-based simulation (PBS). Built upon a differentiable cloth simulator, the optimization process is directed towards minimizing the deviation of the simulated garment shape from the target geometry. Moreover, our produced patterns meet manufacturing requirements such as left-to-right-symmetry, making them suited for reverse garment fabrication. We validate our approach on examples of different garment types, and show that our method faithfully reproduces both the draped garment shape and the sewing pattern.

Recent advances in large language models have brought immense value to the world, with their superior capabilities stemming from the massive number of parameters they utilize. However, even the GPUs with the highest memory capacities, currently peaking at 80GB, are far from sufficient to accommodate these vast parameters and their associated optimizer states when conducting stochastic gradient descent-based optimization. One approach to hosting such huge models is to aggregate device memory from many GPUs. However, this approach introduces prohibitive costs for most academic researchers, who always have a limited budget for many high-end GPU servers. In this paper, we focus on huge model fine-tuning on a single, even low-end, GPU in a commodity server, which is accessible to most AI researchers. In such a scenario, the state-of-the-art work ZeRO-Infinity suffers from two severe issues when running in a commodity server: 1) low GPU utilization due to inefficient swapping, and 2) limited trainable model size due to CPU memory capacity. The underlying reason is that ZeRO-Infinity is optimized for running on high-end GPU servers. To this end, we present Fuyou, a low-cost training framework that enables efficient 100B huge model fine-tuning on a low-end server with a low-end GPU and limited CPU memory capacity. The key idea is to add the SSD-CPU communication as an optimization dimension and thus carefully co-optimize computation and data swapping from a systematic approach to maximize GPU utilization. The experimental results show that 1) Fuyou is able to fine-tune 175B GPT-3 on a consumer GPU RTX 4090 with high GPU utilization, while ZeRO-Infinity fails to fine-tune; and 2) when training a small GPT-3 13B model, Fuyou achieves 156 TFLOPS on an RTX 4090 GPU while ZeRO-Infinity only achieves 45 TFLOPS.

This paper studies a multiplayer reach-avoid differential game in the presence of general polygonal obstacles that block the players' motions. The pursuers cooperate to protect a convex region from the evaders who try to reach the region. We propose a multiplayer onsite and close-to-goal (MOCG) pursuit strategy that can tell and achieve an increasing lower bound on the number of guaranteed defeated evaders. This pursuit strategy fuses the subgame outcomes for multiple pursuers against one evader with hierarchical optimal task allocation in the receding-horizon manner. To determine the qualitative subgame outcomes that who is the game winner, we construct three pursuit winning regions and strategies under which the pursuers guarantee to win against the evader, regardless of the unknown evader strategy. First, we utilize the expanded Apollonius circles and propose the onsite pursuit winning that achieves the capture in finite time. Second, we introduce convex goal-covering polygons (GCPs) and propose the close-to-goal pursuit winning for the pursuers whose visibility region contains the whole protected region, and the goal-visible property will be preserved afterwards. Third, we employ Euclidean shortest paths (ESPs) and construct a pursuit winning region and strategy for the non-goal-visible pursuers, where the pursuers are firstly steered to positions with goal visibility along ESPs. In each horizon, the hierarchical optimal task allocation maximizes the number of defeated evaders and consists of four sequential matchings: capture, enhanced, non-dominated and closest matchings. Numerical examples are presented to illustrate the results.

We consider the problem of average consensus in a distributed system comprising a set of nodes that can exchange information among themselves. We focus on a class of algorithms for solving such a problem whereby each node maintains a state and updates it iteratively as a linear combination of the states maintained by its in-neighbors, i.e., nodes from which it receives information directly. Averaging algorithms within this class can be thought of as discrete-time linear time-varying systems without external driving inputs and whose state matrix is column stochastic. As a result, the algorithms exhibit a global invariance property in that the sum of the state variables remains constant at all times. In this paper, we report on another invariance property for the aforementioned class of averaging algorithms. This property is local to each node and reflects the conservation of certain quantities capturing an aggregate of all the values received by a node from its in-neighbors and all the values sent by said node to its out-neighbors (i.e., nodes to which it sends information directly) throughout the execution of the averaging algorithm. We show how this newly-discovered invariant can be leveraged for detecting errors while executing the averaging algorithm.

We study energy-efficient offloading strategies in a large-scale MEC system with heterogeneous mobile users and network components. The system is considered with enabled user-task handovers that capture the mobility of various mobile users. We focus on a long-run objective and online algorithms that are applicable to realistic systems. The problem is significantly complicated by the large problem size, the heterogeneity of user tasks and network components, and the mobility of the users, for which conventional optimizers cannot reach optimum with a reasonable amount of computational and storage power. We formulate the problem in the vein of the restless multi-armed bandit process that enables the decomposition of high-dimensional state spaces and then achieves near-optimal algorithms applicable to realistically large problems in an online manner. Following the restless bandit technique, we propose two offloading policies by prioritizing the least marginal costs of selecting the corresponding computing and communication resources in the edge and cloud networks. This coincides with selecting the resources with the highest energy efficiency. Both policies are scalable to the offloading problem with a great potential to achieve proved asymptotic optimality - approach optimality as the problem size tends to infinity. With extensive numerical simulations, the proposed policies are demonstrated to clearly outperform baseline policies with respect to power conservation and robust to the tested heavy-tailed lifespan distributions of the offloaded tasks.

Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司