Decentralized Storage Network (DSN) is an emerging technology that challenges traditional cloud-based storage systems by consolidating storage capacities from independent providers and coordinating to provide decentralized storage and retrieval services. However, current DSNs face several challenges associated with data privacy and efficiency of the proof systems. To address these issues, we propose FileDES (\uline{D}ecentralized \uline{E}ncrypted \uline{S}torage), which incorporates three essential elements: privacy preservation, scalable storage proof, and batch verification. FileDES provides encrypted data storage while maintaining data availability, with a scalable Proof of Encrypted Storage (PoES) algorithm that is resilient to Sybil and Generation attacks. Additionally, we introduce a rollup-based batch verification approach to simultaneously verify multiple files using publicly verifiable succinct proofs. We conducted a comparative evaluation on FileDES, Filecoin, Storj and Sia under various conditions, including a WAN composed of up to 120 geographically dispersed nodes. Our protocol outperforms the others in terms of proof generation/verification efficiency, storage costs, and scalability.
The security of integrated circuits (ICs) can be broken by sophisticated physical attacks relying on failure analysis methods. Optical probing is one of the most prominent examples of such attacks, which can be accomplished in a matter of days, even with limited knowledge of the IC under attack. Unfortunately, few countermeasures are proposed in the literature, and none has been fabricated and tested in practice. These countermeasures usually require changing the standard cell libraries and, thus, are incompatible with digital and programmable platforms, such as field programmable gate arrays (FPGAs). In this work, we shift our attention from preventing the attack to detecting and responding to it. We introduce LaserEscape, the first fully digital and FPGA-compatible countermeasure to detect and mitigate optical probing attacks. LaserEscape incorporates digital delay-based sensors to reliably detect the physical alteration on the fabric caused by laser beam irradiations in real time. Furthermore, as a response to the attack, LaserEscape deploys real-time hiding approaches using randomized hardware reconfigurability. It realizes 1) moving target defense (MTD) to physically move the sensitive circuity under attack out of the probing field of focus to protect secret keys and 2) polymorphism to logically obfuscate the functionality of the targeted circuit to counter function extraction and reverse engineering attempts. We demonstrate the effectiveness and resiliency of our approach by performing optical probing attacks on protected and unprotected designs on a 28-nm FPGA. Our results show that optical probing attacks can be reliably detected and mitigated without interrupting the chip's operation.
Requirements Engineering (RE) is a critical phase in the software development process that generates requirements specifications from stakeholders' needs. Recently, deep learning techniques have been successful in several RE tasks. However, obtaining high-quality requirements specifications requires collaboration across multiple tasks and roles. In this paper, we propose an innovative framework called MARE, which leverages collaboration among large language models (LLMs) throughout the entire RE process. MARE divides the RE process into four tasks: elicitation, modeling, verification, and specification. Each task is conducted by engaging one or two specific agents and each agent can conduct several actions. MARE has five agents and nine actions. To facilitate collaboration between agents, MARE has designed a workspace for agents to upload their generated intermediate requirements artifacts and obtain the information they need. We conduct experiments on five public cases, one dataset, and four new cases created by this work. We compared MARE with three baselines using three widely used metrics for the generated requirements models. Experimental results show that MARE can generate more correct requirements models and outperform the state-of-the-art approaches by 15.4%. For the generated requirements specifications, we conduct a human evaluation in three aspects and provide insights about the quality
Many networking tasks now employ deep learning (DL) to solve complex prediction and system optimization problems. However, current design philosophy of DL-based algorithms entails intensive engineering overhead due to the manual design of deep neural networks (DNNs) for different networking tasks. Besides, DNNs tend to achieve poor generalization performance on unseen data distributions/environments. Motivated by the recent success of large language models (LLMs), for the first time, this work studies the LLM adaptation for networking to explore a more sustainable design philosophy. With the massive pre-trained knowledge and powerful inference ability, LLM can serve as the foundation model, and is expected to achieve "one model for all" with even better performance and stronger generalization for various tasks. In this paper, we present NetLLM, the first LLM adaptation framework that efficiently adapts LLMs to solve networking problems. NetLLM addresses many practical challenges in LLM adaptation, from how to process task-specific information with LLMs, to how to improve the efficiency of answer generation and acquiring domain knowledge for networking. Across three networking-related use cases - viewport prediction (VP), adaptive bitrate streaming (ABR) and cluster job scheduling (CJS), we demonstrate the effectiveness of NetLLM in LLM adaptation for networking, and showcase that the adapted LLM significantly outperforms state-of-the-art algorithms.
The demand for precise information on DRAM microarchitectures and error characteristics has surged, driven by the need to explore processing in memory, enhance reliability, and mitigate security vulnerability. Nonetheless, DRAM manufacturers have disclosed only a limited amount of information, making it difficult to find specific information on their DRAM microarchitectures. This paper addresses this gap by presenting more rigorous findings on the microarchitectures of commodity DRAM chips and their impacts on the characteristics of activate-induced bitflips (AIBs), such as RowHammer and RowPress. The previous studies have also attempted to understand the DRAM microarchitectures and associated behaviors, but we have found some of their results to be misled by inaccurate address mapping and internal data swizzling, or lack of a deeper understanding of the modern DRAM cell structure. For accurate and efficient reverse-engineering, we use three tools: AIBs, retention time test, and RowCopy, which can be cross-validated. With these three tools, we first take a macroscopic view of modern DRAM chips to uncover the size, structure, and operation of their subarrays, memory array tiles (MATs), and rows. Then, we analyze AIB characteristics based on the microscopic view of the DRAM microarchitecture, such as 6F^2 cell layout, through which we rectify misunderstandings regarding AIBs and discover a new data pattern that accelerates AIBs. Lastly, based on our findings at both macroscopic and microscopic levels, we identify previously unknown AIB vulnerabilities and propose a simple yet effective protection solution.
We present a deformable prototypical part network (Deformable ProtoPNet), an interpretable image classifier that integrates the power of deep learning and the interpretability of case-based reasoning. This model classifies input images by comparing them with prototypes learned during training, yielding explanations in the form of "this looks like that." However, while previous methods use spatially rigid prototypes, we address this shortcoming by proposing spatially flexible prototypes. Each prototype is made up of several prototypical parts that adaptively change their relative spatial positions depending on the input image. Consequently, a Deformable ProtoPNet can explicitly capture pose variations and context, improving both model accuracy and the richness of explanations provided. Compared to other case-based interpretable models using prototypes, our approach achieves state-of-the-art accuracy and gives an explanation with greater context. The code is available at //github.com/jdonnelly36/Deformable-ProtoPNet.
Point cloud-based large scale place recognition is fundamental for many applications like Simultaneous Localization and Mapping (SLAM). Although many models have been proposed and have achieved good performance by learning short-range local features, long-range contextual properties have often been neglected. Moreover, the model size has also become a bottleneck for their wide applications. To overcome these challenges, we propose a super light-weight network model termed SVT-Net for large scale place recognition. Specifically, on top of the highly efficient 3D Sparse Convolution (SP-Conv), an Atom-based Sparse Voxel Transformer (ASVT) and a Cluster-based Sparse Voxel Transformer (CSVT) are proposed to learn both short-range local features and long-range contextual features in this model. Consisting of ASVT and CSVT, SVT-Net can achieve state-of-the-art on benchmark datasets in terms of both accuracy and speed with a super-light model size (0.9M). Meanwhile, two simplified versions of SVT-Net are introduced, which also achieve state-of-the-art and further reduce the model size to 0.8M and 0.4M respectively.
Search engine has become a fundamental component in various web and mobile applications. Retrieving relevant documents from the massive datasets is challenging for a search engine system, especially when faced with verbose or tail queries. In this paper, we explore a vector space search framework for document retrieval. Specifically, we trained a deep semantic matching model so that each query and document can be encoded as a low dimensional embedding. Our model was trained based on BERT architecture. We deployed a fast k-nearest-neighbor index service for online serving. Both offline and online metrics demonstrate that our method improved retrieval performance and search quality considerably, particularly for tail
Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.
The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.
We present Generative Adversarial Capsule Network (CapsuleGAN), a framework that uses capsule networks (CapsNets) instead of the standard convolutional neural networks (CNNs) as discriminators within the generative adversarial network (GAN) setting, while modeling image data. We provide guidelines for designing CapsNet discriminators and the updated GAN objective function, which incorporates the CapsNet margin loss, for training CapsuleGAN models. We show that CapsuleGAN outperforms convolutional-GAN at modeling image data distribution on the MNIST dataset of handwritten digits, evaluated on the generative adversarial metric and at semi-supervised image classification.