亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A central goal of machine learning is to learn robust representations that capture the causal relationship between inputs features and output labels. However, minimizing empirical risk over finite or biased datasets often results in models latching on to spurious correlations between the training input/output pairs that are not fundamental to the problem at hand. In this paper, we define and analyze robust and spurious representations using the information-theoretic concept of minimal sufficient statistics. We prove that even when there is only bias of the input distribution (i.e. covariate shift), models can still pick up spurious features from their training data. Group distributionally robust optimization (DRO) provides an effective tool to alleviate covariate shift by minimizing the worst-case training loss over a set of pre-defined groups. Inspired by our analysis, we demonstrate that group DRO can fail when groups do not directly account for various spurious correlations that occur in the data. To address this, we further propose to minimize the worst-case losses over a more flexible set of distributions that are defined on the joint distribution of groups and instances, instead of treating each group as a whole at optimization time. Through extensive experiments on one image and two language tasks, we show that our model is significantly more robust than comparable baselines under various partitions. Our code is available at //github.com/violet-zct/group-conditional-DRO.

相關內容

Anomaly detection methods require high-quality features. In recent years, the anomaly detection community has attempted to obtain better features using advances in deep self-supervised feature learning. Surprisingly, a very promising direction, using pretrained deep features, has been mostly overlooked. In this paper, we first empirically establish the perhaps expected, but unreported result, that combining pretrained features with simple anomaly detection and segmentation methods convincingly outperforms, much more complex, state-of-the-art methods. In order to obtain further performance gains in anomaly detection, we adapt pretrained features to the target distribution. Although transfer learning methods are well established in multi-class classification problems, the one-class classification (OCC) setting is not as well explored. It turns out that naive adaptation methods, which typically work well in supervised learning, often result in catastrophic collapse (feature deterioration) and reduce performance in OCC settings. A popular OCC method, DeepSVDD, advocates using specialized architectures, but this limits the adaptation performance gain. We propose two methods for combating collapse: i) a variant of early stopping that dynamically learns the stopping iteration ii) elastic regularization inspired by continual learning. Our method, PANDA, outperforms the state-of-the-art in the OCC, outlier exposure and anomaly segmentation settings by large margins.

Temporal disaggregation is a method commonly used in official statistics to enable high-frequency estimates of key economic indicators, such as GDP. Traditionally, such methods have relied on only a couple of high-frequency indicator series to produce estimates. However, the prevalence of large, and increasing, volumes of administrative and alternative data-sources motivates the need for such methods to be adapted for high-dimensional settings. In this article, we propose a novel sparse temporal-disaggregation procedure and contrast this with the classical Chow-Lin method. We demonstrate the performance of our proposed method through simulation study, highlighting various advantages realised. We also explore its application to disaggregation of UK gross domestic product data, demonstrating the method's ability to operate when the number of potential indicators is greater than the number of low-frequency observations.

We deal with the problem of parameter estimation in stochastic differential equations (SDEs) in a partially observed framework. We aim to design a method working for both elliptic and hypoelliptic SDEs, the latters being characterized by degenerate diffusion coefficients. This feature often causes the failure of contrast estimators based on Euler Maruyama discretization scheme and dramatically impairs classic stochastic filtering methods used to reconstruct the unobserved states. All of theses issues make the estimation problem in hypoelliptic SDEs difficult to solve. To overcome this, we construct a well-defined cost function no matter the elliptic nature of the SDEs. We also bypass the filtering step by considering a control theory perspective. The unobserved states are estimated by solving deterministic optimal control problems using numerical methods which do not need strong assumptions on the diffusion coefficient conditioning. Numerical simulations made on different partially observed hypoelliptic SDEs reveal our method produces accurate estimate while dramatically reducing the computational price comparing to other methods.

Distributionally robust optimization (DRO) is a worst-case framework for stochastic optimization under uncertainty that has drawn fast-growing studies in recent years. When the underlying probability distribution is unknown and observed from data, DRO suggests to compute the worst-case distribution within a so-called uncertainty set that captures the involved statistical uncertainty. In particular, DRO with uncertainty set constructed as a statistical divergence neighborhood ball has been shown to provide a tool for constructing valid confidence intervals for nonparametric functionals, and bears a duality with the empirical likelihood (EL). In this paper, we show how adjusting the ball size of such type of DRO can reduce higher-order coverage errors similar to the Bartlett correction. Our correction, which applies to general von Mises differentiable functionals, is more general than the existing EL literature that only focuses on smooth function models or $M$-estimation. Moreover, we demonstrate a higher-order "self-normalizing" property of DRO regardless of the choice of divergence. Our approach builds on the development of a higher-order expansion of DRO, which is obtained through an asymptotic analysis on a fixed point equation arising from the Karush-Kuhn-Tucker conditions.

Domain adaptation aims to bridge the domain shifts between the source and target domains. These shifts may span different dimensions such as fog, rainfall, etc. However, recent methods typically do not consider explicit prior knowledge on a specific dimension, thus leading to less desired adaptation performance. In this paper, we study a practical setting called Specific Domain Adaptation (SDA) that aligns the source and target domains in a demanded-specific dimension. Within this setting, we observe the intra-domain gap induced by different domainness (i.e., numerical magnitudes of this dimension) is crucial when adapting to a specific domain. To address the problem, we propose a novel Self-Adversarial Disentangling (SAD) framework. In particular, given a specific dimension, we first enrich the source domain by introducing a domainness creator with providing additional supervisory signals. Guided by the created domainness, we design a self-adversarial regularizer and two loss functions to jointly disentangle the latent representations into domainness-specific and domainness-invariant features, thus mitigating the intra-domain gap. Our method can be easily taken as a plug-and-play framework and does not introduce any extra costs in the inference time. We achieve consistent improvements over state-of-the-art methods in both object detection and semantic segmentation tasks.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Minimizing cross-entropy over the softmax scores of a linear map composed with a high-capacity encoder is arguably the most popular choice for training neural networks on supervised learning tasks. However, recent works show that one can directly optimize the encoder instead, to obtain equally (or even more) discriminative representations via a supervised variant of a contrastive objective. In this work, we address the question whether there are fundamental differences in the sought-for representation geometry in the output space of the encoder at minimal loss. Specifically, we prove, under mild assumptions, that both losses attain their minimum once the representations of each class collapse to the vertices of a regular simplex, inscribed in a hypersphere. We provide empirical evidence that this configuration is attained in practice and that reaching a close-to-optimal state typically indicates good generalization performance. Yet, the two losses show remarkably different optimization behavior. The number of iterations required to perfectly fit to data scales superlinearly with the amount of randomly flipped labels for the supervised contrastive loss. This is in contrast to the approximately linear scaling previously reported for networks trained with cross-entropy.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Why deep neural networks (DNNs) capable of overfitting often generalize well in practice is a mystery in deep learning. Existing works indicate that this observation holds for both complicated real datasets and simple datasets of one-dimensional (1-d) functions. In this work, for natural images and low-frequency dominant 1-d functions, we empirically found that a DNN with common settings first quickly captures the dominant low-frequency components, and then relatively slowly captures high-frequency ones. We call this phenomenon Frequency Principle (F-Principle). F-Principle can be observed over various DNN setups of different activation functions, layer structures and training algorithms in our experiments. F-Principle can be used to understand (i) the behavior of DNN training in the information plane and (ii) why DNNs often generalize well albeit its ability of overfitting. This F-Principle potentially can provide insights into understanding the general principle underlying DNN optimization and generalization for real datasets.

Because of continuous advances in mathematical programing, Mix Integer Optimization has become a competitive vis-a-vis popular regularization method for selecting features in regression problems. The approach exhibits unquestionable foundational appeal and versatility, but also poses important challenges. We tackle these challenges, reducing computational burden when tuning the sparsity bound (a parameter which is critical for effectiveness) and improving performance in the presence of feature collinearity and of signals that vary in nature and strength. Importantly, we render the approach efficient and effective in applications of realistic size and complexity - without resorting to relaxations or heuristics in the optimization, or abandoning rigorous cross-validation tuning. Computational viability and improved performance in subtler scenarios is achieved with a multi-pronged blueprint, leveraging characteristics of the Mixed Integer Programming framework and by means of whitening, a data pre-processing step.

北京阿比特科技有限公司