Writing Plonkish constraint systems by hand is tedious and error-prone; as a result, several libraries and DSL's have emerged over the years to facilitate this task as well as techniques to directly analyze constraint systems. However, standalone languages require developers to use a foreign toolchain and leave gaps between the application and its circuits. On the other hand, Rust-embedded DSL like Halo2 or Boojum lack in modularity; furthermore, it is usually impossible to tease apart the circuit from the proof system, making it hard to reuse circuits and even to compare performance of different proof systems on the same circuits. In this paper we introduce Clap, the first Rust eDSL to propose a prover-agnostic circuit format that enables extensibility, automatic optimizations, and formal guarantees for the resulting constraint system. Clap generates Plonkish constraint systems and witness generators that are sound and complete with respect to each other, leaving no room for subtle bugs due to under- or over-constraining. A model of this equivalence is proved in the Agda proof assistant for a subset of Clap's Rust implementation that is expressive enough to capture the compositional properties of our format. In order to increase the reuse of circuits, a number of optimizations are carried out automatically, sparing the developer from over-specifying low-level constraint system details in their circuit descriptions. We test the expressivity and efficiency of Clap on an implementation of the Poseidon2 hash function that produces a constraint system that is competitive in terms of size with hand-optimized Boojum circuits.
Large Language Models have revolutionized code generation ability by converting natural language descriptions into executable code. However, generating complex code within real-world scenarios remains challenging due to intricate structures, subtle bugs, understanding of advanced data types, and lack of supplementary contents. To address these challenges, we introduce the CoCoST framework, which enhances complex code generation by online searching for more information with planned queries and correctness testing for code refinement. Moreover, CoCoST serializes the complex inputs and outputs to improve comprehension and generates test cases to ensure the adaptability for real-world applications. CoCoST is validated through rigorous experiments on the DS-1000 and ClassEval datasets. Experimental results show that CoCoST substantially improves the quality of complex code generation, highlighting its potential to enhance the practicality of LLMs in generating complex code.
Combining CNNs or ViTs, with RNNs for spatiotemporal forecasting, has yielded unparalleled results in predicting temporal and spatial dynamics. However, modeling extensive global information remains a formidable challenge; CNNs are limited by their narrow receptive fields, and ViTs struggle with the intensive computational demands of their attention mechanisms. The emergence of recent Mamba-based architectures has been met with enthusiasm for their exceptional long-sequence modeling capabilities, surpassing established vision models in efficiency and accuracy, which motivates us to develop an innovative architecture tailored for spatiotemporal forecasting. In this paper, we propose the VMRNN cell, a new recurrent unit that integrates the strengths of Vision Mamba blocks with LSTM. We construct a network centered on VMRNN cells to tackle spatiotemporal prediction tasks effectively. Our extensive evaluations show that our proposed approach secures competitive results on a variety of tasks while maintaining a smaller model size. Our code is available at //github.com/yyyujintang/VMRNN-PyTorch.
3D multi-object tracking and trajectory prediction are two crucial modules in autonomous driving systems. Generally, the two tasks are handled separately in traditional paradigms and a few methods have started to explore modeling these two tasks in a joint manner recently. However, these approaches suffer from the limitations of single-frame training and inconsistent coordinate representations between tracking and prediction tasks. In this paper, we propose a streaming and unified framework for joint 3D Multi-Object Tracking and trajectory Prediction (StreamMOTP) to address the above challenges. Firstly, we construct the model in a streaming manner and exploit a memory bank to preserve and leverage the long-term latent features for tracked objects more effectively. Secondly, a relative spatio-temporal positional encoding strategy is introduced to bridge the gap of coordinate representations between the two tasks and maintain the pose-invariance for trajectory prediction. Thirdly, we further improve the quality and consistency of predicted trajectories with a dual-stream predictor. We conduct extensive experiments on popular nuSences dataset and the experimental results demonstrate the effectiveness and superiority of StreamMOTP, which outperforms previous methods significantly on both tasks. Furthermore, we also prove that the proposed framework has great potential and advantages in actual applications of autonomous driving.
Employing Large Language Models (LLMs) to address mathematical problems is an intriguing research endeavor, considering the abundance of math problems expressed in natural language across numerous science and engineering fields. LLMs, with their generalized ability, are used as a foundation model to build AI agents for different tasks. In this paper, we study the effectiveness of utilizing LLM agents to solve math problems through conversations. We propose MathChat, a conversational problem-solving framework designed for math problems. MathChat consists of an LLM agent and a user proxy agent which is responsible for tool execution and additional guidance. This synergy facilitates a collaborative problem-solving process, where the agents engage in a dialogue to solve the problems. We perform evaluation on difficult high school competition problems from the MATH dataset. Utilizing Python, we show that MathChat can further improve previous tool-using prompting methods by 6%.
Most WSOD methods rely on traditional object proposals to generate candidate regions and are confronted with unstable training, which easily gets stuck in a poor local optimum. In this paper, we introduce a unified, high-capacity weakly supervised object detection (WSOD) network called HUWSOD, which utilizes a comprehensive self-training framework without needing external modules or additional supervision. HUWSOD innovatively incorporates a self-supervised proposal generator and an autoencoder proposal generator with a multi-rate resampling pyramid to replace traditional object proposals, enabling end-to-end WSOD training and inference. Additionally, we implement a holistic self-training scheme that refines detection scores and coordinates through step-wise entropy minimization and consistency-constraint regularization, ensuring consistent predictions across stochastic augmentations of the same image. Extensive experiments on PASCAL VOC and MS COCO demonstrate that HUWSOD competes with state-of-the-art WSOD methods, eliminating the need for offline proposals and additional data. The peak performance of HUWSOD approaches that of fully-supervised Faster R-CNN. Our findings also indicate that randomly initialized boxes, although significantly different from well-designed offline object proposals, are effective for WSOD training.
Few-shot anomaly detection methods can effectively address data collecting difficulty in industrial scenarios. Compared to 2D few-shot anomaly detection (2D-FSAD), 3D few-shot anomaly detection (3D-FSAD) is still an unexplored but essential task. In this paper, we propose CLIP3D-AD, an efficient 3D-FSAD method extended on CLIP. We successfully transfer strong generalization ability of CLIP into 3D-FSAD. Specifically, we synthesize anomalous images on given normal images as sample pairs to adapt CLIP for 3D anomaly classification and segmentation. For classification, we introduce an image adapter and a text adapter to fine-tune global visual features and text features. Meanwhile, we propose a coarse-to-fine decoder to fuse and facilitate intermediate multi-layer visual representations of CLIP. To benefit from geometry information of point cloud and eliminate modality and data discrepancy when processed by CLIP, we project and render point cloud to multi-view normal and anomalous images. Then we design multi-view fusion module to fuse features of multi-view images extracted by CLIP which are used to facilitate visual representations for further enhancing vision-language correlation. Extensive experiments demonstrate that our method has a competitive performance of 3D few-shot anomaly classification and segmentation on MVTec-3D AD dataset.
Large Language Models (LLMs) have stunningly advanced the field of machine translation, though their effectiveness within the financial domain remains largely underexplored. To probe this issue, we constructed a fine-grained Chinese-English parallel corpus of financial news called FFN. We acquired financial news articles spanning between January 1st, 2014, to December 31, 2023, from mainstream media websites such as CNN, FOX, and China Daily. The dataset consists of 1,013 main text and 809 titles, all of which have been manually corrected. We measured the translation quality of two LLMs -- ChatGPT and ERNIE-bot, utilizing BLEU, TER and chrF scores as the evaluation metrics. For comparison, we also trained an OpenNMT model based on our dataset. We detail problems of LLMs and provide in-depth analysis, intending to stimulate further research and solutions in this largely uncharted territory. Our research underlines the need to optimize LLMs within the specific field of financial translation to ensure accuracy and quality.
In an observational study, matching aims to create many small sets of similar treated and control units from initial samples that may differ substantially in order to permit more credible causal inferences. The problem of constructing matched sets may be formulated as an optimization problem, but it can be challenging to specify a single objective function that adequately captures all the design considerations at work. One solution, proposed by \citet{pimentel2019optimal} is to explore a family of matched designs that are Pareto optimal for multiple objective functions. We present an R package, \href{//github.com/ShichaoHan/MultiObjMatch}{\texttt{MultiObjMatch}}, that implements this multi-objective matching strategy using a network flow algorithm for several common design goals: marginal balance on important covariates, size of the matched sample, and average within-pair multivariate distances. We demonstrate the package's flexibility in exploring user-defined tradeoffs of interest via two case studies, a reanalysis of the canonical National Supported Work dataset and a novel analysis of a clinical dataset to estimate the impact of diabetic kidney disease on hospitalization costs.
Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.
Causality knowledge is vital to building robust AI systems. Deep learning models often perform poorly on tasks that require causal reasoning, which is often derived using some form of commonsense knowledge not immediately available in the input but implicitly inferred by humans. Prior work has unraveled spurious observational biases that models fall prey to in the absence of causality. While language representation models preserve contextual knowledge within learned embeddings, they do not factor in causal relationships during training. By blending causal relationships with the input features to an existing model that performs visual cognition tasks (such as scene understanding, video captioning, video question-answering, etc.), better performance can be achieved owing to the insight causal relationships bring about. Recently, several models have been proposed that have tackled the task of mining causal data from either the visual or textual modality. However, there does not exist widespread research that mines causal relationships by juxtaposing the visual and language modalities. While images offer a rich and easy-to-process resource for us to mine causality knowledge from, videos are denser and consist of naturally time-ordered events. Also, textual information offers details that could be implicit in videos. We propose iReason, a framework that infers visual-semantic commonsense knowledge using both videos and natural language captions. Furthermore, iReason's architecture integrates a causal rationalization module to aid the process of interpretability, error analysis and bias detection. We demonstrate the effectiveness of iReason using a two-pronged comparative analysis with language representation learning models (BERT, GPT-2) as well as current state-of-the-art multimodal causality models.