Cross-lingual entity linking (XEL) is the task of finding referents in a target-language knowledge base (KB) for mentions extracted from source-language texts. The first step of (X)EL is candidate generation, which retrieves a list of plausible candidate entities from the target-language KB for each mention. Approaches based on resources from Wikipedia have proven successful in the realm of relatively high-resource languages (HRL), but these do not extend well to low-resource languages (LRL) with few, if any, Wikipedia pages. Recently, transfer learning methods have been shown to reduce the demand for resources in the LRL by utilizing resources in closely-related languages, but the performance still lags far behind their high-resource counterparts. In this paper, we first assess the problems faced by current entity candidate generation methods for low-resource XEL, then propose three improvements that (1) reduce the disconnect between entity mentions and KB entries, and (2) improve the robustness of the model to low-resource scenarios. The methods are simple, but effective: we experiment with our approach on seven XEL datasets and find that they yield an average gain of 16.9% in Top-30 gold candidate recall, compared to state-of-the-art baselines. Our improved model also yields an average gain of 7.9% in in-KB accuracy of end-to-end XEL.
Recently, neural methods have achieved state-of-the-art (SOTA) results in Named Entity Recognition (NER) tasks for many languages without the need for manually crafted features. However, these models still require manually annotated training data, which is not available for many languages. In this paper, we propose an unsupervised cross-lingual NER model that can transfer NER knowledge from one language to another in a completely unsupervised way without relying on any bilingual dictionary or parallel data. Our model achieves this through word-level adversarial learning and augmented fine-tuning with parameter sharing and feature augmentation. Experiments on five different languages demonstrate the effectiveness of our approach, outperforming existing models by a good margin and setting a new SOTA for each language pair.
For languages with no annotated resources, transferring knowledge from rich-resource languages is an effective solution for named entity recognition (NER). While all existing methods directly transfer from source-learned model to a target language, in this paper, we propose to fine-tune the learned model with a few similar examples given a test case, which could benefit the prediction by leveraging the structural and semantic information conveyed in such similar examples. To this end, we present a meta-learning algorithm to find a good model parameter initialization that could fast adapt to the given test case and propose to construct multiple pseudo-NER tasks for meta-training by computing sentence similarities. To further improve the model's generalization ability across different languages, we introduce a masking scheme and augment the loss function with an additional maximum term during meta-training. We conduct extensive experiments on cross-lingual named entity recognition with minimal resources over five target languages. The results show that our approach significantly outperforms existing state-of-the-art methods across the board.
We study open domain response generation with limited message-response pairs. The problem exists in real-world applications but is less explored by the existing work. Since the paired data now is no longer enough to train a neural generation model, we consider leveraging the large scale of unpaired data that are much easier to obtain, and propose response generation with both paired and unpaired data. The generation model is defined by an encoder-decoder architecture with templates as prior, where the templates are estimated from the unpaired data as a neural hidden semi-markov model. By this means, response generation learned from the small paired data can be aided by the semantic and syntactic knowledge in the large unpaired data. To balance the effect of the prior and the input message to response generation, we propose learning the whole generation model with an adversarial approach. Empirical studies on question response generation and sentiment response generation indicate that when only a few pairs are available, our model can significantly outperform several state-of-the-art response generation models in terms of both automatic and human evaluation.
In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.
Relation classification is an important NLP task to extract relations between entities. The state-of-the-art methods for relation classification are primarily based on Convolutional or Recurrent Neural Networks. Recently, the pre-trained BERT model achieves very successful results in many NLP classification / sequence labeling tasks. Relation classification differs from those tasks in that it relies on information of both the sentence and the two target entities. In this paper, we propose a model that both leverages the pre-trained BERT language model and incorporates information from the target entities to tackle the relation classification task. We locate the target entities and transfer the information through the pre-trained architecture and incorporate the corresponding encoding of the two entities. We achieve significant improvement over the state-of-the-art method on the SemEval-2010 task 8 relational dataset.
The first stage of every knowledge base question answering approach is to link entities in the input question. We investigate entity linking in the context of a question answering task and present a jointly optimized neural architecture for entity mention detection and entity disambiguation that models the surrounding context on different levels of granularity. We use the Wikidata knowledge base and available question answering datasets to create benchmarks for entity linking on question answering data. Our approach outperforms the previous state-of-the-art system on this data, resulting in an average 8% improvement of the final score. We further demonstrate that our model delivers a strong performance across different entity categories.
The recent years have seen a revival of interest in textual entailment, sparked by i) the emergence of powerful deep neural network learners for natural language processing and ii) the timely development of large-scale evaluation datasets such as SNLI. Recast as natural language inference, the problem now amounts to detecting the relation between pairs of statements: they either contradict or entail one another, or they are mutually neutral. Current research in natural language inference is effectively exclusive to English. In this paper, we propose to advance the research in SNLI-style natural language inference toward multilingual evaluation. To that end, we provide test data for four major languages: Arabic, French, Spanish, and Russian. We experiment with a set of baselines. Our systems are based on cross-lingual word embeddings and machine translation. While our best system scores an average accuracy of just over 75%, we focus largely on enabling further research in multilingual inference.
Recognizing semantically similar sentences or paragraphs across languages is beneficial for many tasks, ranging from cross-lingual information retrieval and plagiarism detection to machine translation. Recently proposed methods for predicting cross-lingual semantic similarity of short texts, however, make use of tools and resources (e.g., machine translation systems, syntactic parsers or named entity recognition) that for many languages (or language pairs) do not exist. In contrast, we propose an unsupervised and a very resource-light approach for measuring semantic similarity between texts in different languages. To operate in the bilingual (or multilingual) space, we project continuous word vectors (i.e., word embeddings) from one language to the vector space of the other language via the linear translation model. We then align words according to the similarity of their vectors in the bilingual embedding space and investigate different unsupervised measures of semantic similarity exploiting bilingual embeddings and word alignments. Requiring only a limited-size set of word translation pairs between the languages, the proposed approach is applicable to virtually any pair of languages for which there exists a sufficiently large corpus, required to learn monolingual word embeddings. Experimental results on three different datasets for measuring semantic textual similarity show that our simple resource-light approach reaches performance close to that of supervised and resource intensive methods, displaying stability across different language pairs. Furthermore, we evaluate the proposed method on two extrinsic tasks, namely extraction of parallel sentences from comparable corpora and cross lingual plagiarism detection, and show that it yields performance comparable to those of complex resource-intensive state-of-the-art models for the respective tasks.
In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.
Image captioning has so far been explored mostly in English, as most available datasets are in this language. However, the application of image captioning should not be restricted by language. Only few studies have been conducted for image captioning in a cross-lingual setting. Different from these works that manually build a dataset for a target language, we aim to learn a cross-lingual captioning model fully from machine-translated sentences. To conquer the lack of fluency in the translated sentences, we propose in this paper a fluency-guided learning framework. The framework comprises a module to automatically estimate the fluency of the sentences and another module to utilize the estimated fluency scores to effectively train an image captioning model for the target language. As experiments on two bilingual (English-Chinese) datasets show, our approach improves both fluency and relevance of the generated captions in Chinese, but without using any manually written sentences from the target language.