Continual learning (CL) algorithms strive to acquire new knowledge while preserving prior information. However, this stability-plasticity trade-off remains a central challenge. This paper introduces a framework that dissects this trade-off, offering valuable insights into CL algorithms. The Readout-Decomposition of Activation Change (RDAC) framework first addresses the stability-plasticity dilemma and its relation to catastrophic forgetting. It relates learning-induced activation changes in the range of prior readouts to the degree of stability and changes in the null space to the degree of plasticity. In deep non-linear networks tackling split-CIFAR-110 tasks, the framework clarifies the stability-plasticity trade-offs of the popular regularization algorithms Synaptic intelligence (SI), Elastic-weight consolidation (EWC), and learning without Forgetting (LwF), and replay-based algorithms Gradient episodic memory (GEM), and data replay. GEM and data replay preserved stability and plasticity, while SI, EWC, and LwF traded off plasticity for stability. The inability of the regularization algorithms to maintain plasticity was linked to them restricting the change of activations in the null space of the prior readout. Additionally, for one-hidden-layer linear neural networks, we derived a gradient decomposition algorithm to restrict activation change only in the range of the prior readouts, to maintain high stability while not further sacrificing plasticity. Results demonstrate that the algorithm maintained stability without significant plasticity loss. The RDAC framework informs the behavior of existing CL algorithms and paves the way for novel CL approaches. Finally, it sheds light on the connection between learning-induced activation/representation changes and the stability-plasticity dilemma, also offering insights into representational drift in biological systems.
Learning from human feedback (LHF) -- and in particular learning from pairwise preferences -- has recently become a crucial ingredient in training large language models (LLMs), and has been the subject of much research. Most recent works frame it as a reinforcement learning problem, where a reward function is learned from pairwise preference data and the LLM is treated as a policy which is adapted to maximize the rewards, often under additional regularization constraints. We propose an alternative interpretation which centers on the generative process for pairwise preferences and treats LHF as a density estimation problem. We provide theoretical and empirical results showing that for a family of generative processes defined via preference behavior distribution equations, training a reward function on pairwise preferences effectively models an annotator's implicit preference distribution. Finally, we discuss and present findings on "annotator misspecification" -- failure cases where wrong modeling assumptions are made about annotator behavior, resulting in poorly-adapted models -- suggesting that approaches that learn from pairwise human preferences could have trouble learning from a population of annotators with diverse viewpoints.
The semantic segmentation of pelvic organs via MRI has important clinical significance. Recently, deep learning-enabled semantic segmentation has facilitated the three-dimensional geometric reconstruction of pelvic floor organs, providing clinicians with accurate and intuitive diagnostic results. However, the task of labeling pelvic floor MRI segmentation, typically performed by clinicians, is labor-intensive and costly, leading to a scarcity of labels. Insufficient segmentation labels limit the precise segmentation and reconstruction of pelvic floor organs. To address these issues, we propose a semi-supervised framework for pelvic organ segmentation. The implementation of this framework comprises two stages. In the first stage, it performs self-supervised pre-training using image restoration tasks. Subsequently, fine-tuning of the self-supervised model is performed, using labeled data to train the segmentation model. In the second stage, the self-supervised segmentation model is used to generate pseudo labels for unlabeled data. Ultimately, both labeled and unlabeled data are utilized in semi-supervised training. Upon evaluation, our method significantly enhances the performance in the semantic segmentation and geometric reconstruction of pelvic organs, Dice coefficient can increase by 2.65% averagely. Especially for organs that are difficult to segment, such as the uterus, the accuracy of semantic segmentation can be improved by up to 3.70%.
While deep learning has achieved remarkable success, there is no clear explanation about why it works so well. In order to discuss this question quantitatively, we need a mathematical framework that explains what learning is in the first place. After several considerations, we succeeded in constructing a mathematical framework that can provide a unified understanding of all types of learning, including deep learning and learning in the brain. We call it learning principle, and it follows that all learning is equivalent to estimating the probability of input data. We not only derived this principle, but also mentioned its application to actual machine learning models. For example, we found that conventional supervised learning is equivalent to estimating conditional probabilities, and succeeded in making supervised learning more effective and generalized. We also proposed a new method of defining the values of estimated probability using differentiation, and showed that unsupervised learning can be performed on arbitrary dataset without any prior knowledge. Namely, this method is a general-purpose machine learning in the true sense. Moreover, we succeeded in describing the learning mechanism in the brain by considering the time evolution of a fully or partially connected model and applying this new method. The learning principle provides solutions to many unsolved problems in deep learning and cognitive neuroscience.
Robotic capacities in object manipulation are incomparable to those of humans. Besides years of learning, humans rely heavily on the richness of information from physical interaction with the environment. In particular, tactile sensing is crucial in providing such rich feedback. Despite its potential contributions to robotic manipulation, tactile sensing is less exploited; mainly due to the complexity of the time series provided by tactile sensors. In this work, we propose a method for assessing grasp stability using tactile sensing. More specifically, we propose a methodology to extract task-relevant features and design efficient classifiers to detect object slippage with respect to individual fingertips. We compare two classification models: support vector machine and logistic regression. We use highly sensitive Uskin tactile sensors mounted on an Allegro hand to test and validate our method. Our results demonstrate that the proposed method is effective in slippage detection in an online fashion.
Most state-of-the-art machine learning techniques revolve around the optimisation of loss functions. Defining appropriate loss functions is therefore critical to successfully solving problems in this field. We present a survey of the most commonly used loss functions for a wide range of different applications, divided into classification, regression, ranking, sample generation and energy based modelling. Overall, we introduce 33 different loss functions and we organise them into an intuitive taxonomy. Each loss function is given a theoretical backing and we describe where it is best used. This survey aims to provide a reference of the most essential loss functions for both beginner and advanced machine learning practitioners.
Incorporating prior knowledge into pre-trained language models has proven to be effective for knowledge-driven NLP tasks, such as entity typing and relation extraction. Current pre-training procedures usually inject external knowledge into models by using knowledge masking, knowledge fusion and knowledge replacement. However, factual information contained in the input sentences have not been fully mined, and the external knowledge for injecting have not been strictly checked. As a result, the context information cannot be fully exploited and extra noise will be introduced or the amount of knowledge injected is limited. To address these issues, we propose MLRIP, which modifies the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a two-stage entity replacement strategy. Extensive experiments with comprehensive analyses illustrate the superiority of MLRIP over BERT-based models in military knowledge-driven NLP tasks.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.
The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.
Meta-learning, or learning to learn, has gained renewed interest in recent years within the artificial intelligence community. However, meta-learning is incredibly prevalent within nature, has deep roots in cognitive science and psychology, and is currently studied in various forms within neuroscience. The aim of this review is to recast previous lines of research in the study of biological intelligence within the lens of meta-learning, placing these works into a common framework. More recent points of interaction between AI and neuroscience will be discussed, as well as interesting new directions that arise under this perspective.