亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advances in technology for hyper-realistic visual effects provoke the concern that deepfake videos of political speeches will soon be visually indistinguishable from authentic video recordings. The conventional wisdom in communications research predicts people will fall for fake news more often when the same version of a story is presented as a video rather than text. Here, we evaluate how accurately 41,822 participants distinguish real political speeches from fabrications in an experiment where speeches are randomized to appear as permutations of text, audio, and video. We find access to audio and visual communication modalities improve participants' accuracy. Here, human judgment relies more on how something is said, the audio-visual cues, than what is said, the speech content. However, we find that reflective reasoning moderates the degree to which participants consider visual information: low performance on the Cognitive Reflection Test is associated with an over-reliance on what is said.

相關內容

Generating text with autoregressive language models (LMs) is of great importance to many natural language processing (NLP) applications. Previous solutions for this task often produce text that contains degenerative expressions or lacks semantic consistency. Recently, Su et al. introduced a new decoding method, contrastive search, based on the isotropic representation space of the language model and obtained new state of the art on various benchmarks. Additionally, Su et al. argued that the representations of autoregressive LMs (e.g. GPT-2) are intrinsically anisotropic which is also shared by previous study. Therefore, to ensure the language model follows an isotropic distribution, Su et al. proposed a contrastive learning scheme, SimCTG, which calibrates the language model's representations through additional training. In this study, we first answer the question: "Are autoregressive LMs really anisotropic?". To this end, we extensively evaluate the isotropy of LMs across 16 major languages. Surprisingly, we find that the anisotropic problem only exists in the two specific English GPT-2-small/medium models. On the other hand, all other evaluated LMs are naturally isotropic which is in contrast to the conclusion drawn by previous studies. Based on our findings, we further assess the contrastive search decoding method using off-the-shelf LMs on four generation tasks across 16 languages. Our experimental results demonstrate that contrastive search significantly outperforms previous decoding methods without any additional training. More notably, on 12 out of 16 evaluated languages, contrastive search performs comparably with human-level performances as judged by human evaluations.

The decomposition of sounds into sines, transients, and noise is a long-standing research problem in audio processing. The current solutions for this three-way separation detect either horizontal and vertical structures or anisotropy and orientations in the spectrogram to identify the properties of each spectral bin and classify it as sinusoidal, transient, or noise. This paper proposes an enhanced three-way decomposition method based on fuzzy logic, enabling soft masking while preserving the perfect reconstruction property. The proposed method allows each spectral bin to simultaneously belong to two classes, sine and noise or transient and noise. Results of a subjective listening test against three other techniques are reported, showing that the proposed decomposition yields a better or comparable quality. The main improvement appears in transient separation, which enjoys little or no loss of energy or leakage from the other components and performs well for test signals presenting strong transients. The audio quality of the separation is shown to depend on the complexity of the input signal for all tested methods. The proposed method helps improve the quality of various audio processing applications. A successful implementation over a state-of-the-art time-scale modification method is reported as an example.

Deep neural networks have shown excellent prospects in speech separation tasks. However, obtaining good results while keeping a low model complexity remains challenging in real-world applications. In this paper, we provide a bio-inspired efficient encoder-decoder architecture by mimicking the brain's top-down attention, called TDANet, with decreased model complexity without sacrificing performance. The top-down attention in TDANet is extracted by the global attention (GA) module and the cascaded local attention (LA) layers. The GA module takes multi-scale acoustic features as input to extract global attention signal, which then modulates features of different scales by direct top-down connections. The LA layers use features of adjacent layers as input to extract the local attention signal, which is used to modulate the lateral input in a top-down manner. On three benchmark datasets, TDANet consistently achieved competitive separation performance to previous state-of-the-art (SOTA) methods with higher efficiency. Specifically, TDANet's multiply-accumulate operations (MACs) are only 5\% of Sepformer, one of the previous SOTA models, and CPU inference time is only 10\% of Sepformer. In addition, a large-size version of TDANet obtained SOTA results on three datasets, with MACs still only 10\% of Sepformer and the CPU inference time only 24\% of Sepformer. Our study suggests that top-down attention can be a more efficient strategy for speech separation.

Robots that interact with humans in a physical space or application need to think about the person's posture, which typically comes from visual sensors like cameras and infra-red. Artificial intelligence and machine learning algorithms use information from these sensors either directly or after some level of symbolic abstraction, and the latter usually partitions the range of observed values to discretize the continuous signal data. Although these representations have been effective in a variety of algorithms with respect to accuracy and task completion, the underlying models are rarely interpretable, which also makes their outputs more difficult to explain to people who request them. Instead of focusing on the possible sensor values that are familiar to a machine, we introduce a qualitative spatial reasoning approach that describes the human posture in terms that are more familiar to people. This paper explores the derivation of our symbolic representation at two levels of detail and its preliminary use as features for interpretable activity recognition.

Understanding the impact of the most effective policies or treatments on a response variable of interest is desirable in many empirical works in economics, statistics and other disciplines. Due to the widespread winner's curse phenomenon, conventional statistical inference assuming that the top policies are chosen independent of the random sample may lead to overly optimistic evaluations of the best policies. In recent years, given the increased availability of large datasets, such an issue can be further complicated when researchers include many covariates to estimate the policy or treatment effects in an attempt to control for potential confounders. In this manuscript, to simultaneously address the above-mentioned issues, we propose a resampling-based procedure that not only lifts the winner's curse in evaluating the best policies observed in a random sample, but also is robust to the presence of many covariates. The proposed inference procedure yields accurate point estimates and valid frequentist confidence intervals that achieve the exact nominal level as the sample size goes to infinity for multiple best policy effect sizes. We illustrate the finite-sample performance of our approach through Monte Carlo experiments and two empirical studies, evaluating the most effective policies in charitable giving and the most beneficial group of workers in the National Supported Work program.

Methods that can determine if two given video sequences are captured by the same device (e.g., mobile telephone or digital camera) can be used in many forensics tasks. In this paper we refer to this as "video device matching". In open-set video forensics scenarios it is easier to determine if two video sequences were captured with the same device than identifying the specific device. In this paper, we propose a technique for open-set video device matching. Given two H.264 compressed video sequences, our method can determine if they are captured by the same device, even if our method has never encountered the device in training. We denote our proposed technique as H.264 Video Device Matching (H4VDM). H4VDM uses H.264 compression information extracted from video sequences to make decisions. It is more robust against artifacts that alter camera sensor fingerprints, and it can be used to analyze relatively small fragments of the H.264 sequence. We trained and tested our method on a publicly available video forensics dataset consisting of 35 devices, where our proposed method demonstrated good performance.

Designing and generating new data under targeted properties has been attracting various critical applications such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific knowledge and low throughput to support effective and efficient data generation. Recently, the advancement of deep learning induces expressive methods that can learn the underlying representation and properties of data. Such capability provides new opportunities in figuring out the mutual relationship between the structural patterns and functional properties of the data and leveraging such relationship to generate structural data given the desired properties. This article provides a systematic review of this promising research area, commonly known as controllable deep data generation. Firstly, the potential challenges are raised and preliminaries are provided. Then the controllable deep data generation is formally defined, a taxonomy on various techniques is proposed and the evaluation metrics in this specific domain are summarized. After that, exciting applications of controllable deep data generation are introduced and existing works are experimentally analyzed and compared. Finally, the promising future directions of controllable deep data generation are highlighted and five potential challenges are identified.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

The goal of text generation is to make machines express in human language. It is one of the most important yet challenging tasks in natural language processing (NLP). Since 2014, various neural encoder-decoder models pioneered by Seq2Seq have been proposed to achieve the goal by learning to map input text to output text. However, the input text alone often provides limited knowledge to generate the desired output, so the performance of text generation is still far from satisfaction in many real-world scenarios. To address this issue, researchers have considered incorporating various forms of knowledge beyond the input text into the generation models. This research direction is known as knowledge-enhanced text generation. In this survey, we present a comprehensive review of the research on knowledge enhanced text generation over the past five years. The main content includes two parts: (i) general methods and architectures for integrating knowledge into text generation; (ii) specific techniques and applications according to different forms of knowledge data. This survey can have broad audiences, researchers and practitioners, in academia and industry.

We present a new method to learn video representations from large-scale unlabeled video data. Ideally, this representation will be generic and transferable, directly usable for new tasks such as action recognition and zero or few-shot learning. We formulate unsupervised representation learning as a multi-modal, multi-task learning problem, where the representations are shared across different modalities via distillation. Further, we introduce the concept of loss function evolution by using an evolutionary search algorithm to automatically find optimal combination of loss functions capturing many (self-supervised) tasks and modalities. Thirdly, we propose an unsupervised representation evaluation metric using distribution matching to a large unlabeled dataset as a prior constraint, based on Zipf's law. This unsupervised constraint, which is not guided by any labeling, produces similar results to weakly-supervised, task-specific ones. The proposed unsupervised representation learning results in a single RGB network and outperforms previous methods. Notably, it is also more effective than several label-based methods (e.g., ImageNet), with the exception of large, fully labeled video datasets.

北京阿比特科技有限公司