Visual quality inspection in high performance manufacturing can benefit from automation, due to cost savings and improved rigor. Deep learning techniques are the current state of the art for generic computer vision tasks like classification and object detection. Manufacturing data can pose a challenge for deep learning because data is highly repetitive and there are few images of defects or deviations to learn from. Deep learning models trained with such data can be fragile and sensitive to context, and can under-detect new defects not found in the training data. In this work, we explore training defect detection models to learn specific defects out of context, so that they are more likely to be detected in new situations. We demonstrate how models trained on diverse images containing a common defect type can pick defects out in new circumstances. Such generic models could be more robust to new defects not found data collected for training, and can reduce data collection impediments to implementing visual inspection on production lines. Additionally, we demonstrate that object detection models trained to predict a label and bounding box outperform classifiers that predict a label only on held out test data typical of manufacturing inspection tasks. Finally, we studied the factors that affect generalization in order to train models that work under a wider range of conditions.
Federated learning (FL) has emerged as a promising approach for training machine learning models on decentralized data without compromising data privacy. In this paper, we propose a FL algorithm for object detection in quality inspection tasks using YOLOv5 as the object detection algorithm and Federated Averaging (FedAvg) as the FL algorithm. We apply this approach to a manufacturing use-case where multiple factories/clients contribute data for training a global object detection model while preserving data privacy on a non-IID dataset. Our experiments demonstrate that our FL approach achieves better generalization performance on the overall clients' test dataset and generates improved bounding boxes around the objects compared to models trained using local clients' datasets. This work showcases the potential of FL for quality inspection tasks in the manufacturing industry and provides valuable insights into the performance and feasibility of utilizing YOLOv5 and FedAvg for federated object detection.
Despite the success of deep-learning models in many tasks, there have been concerns about such models learning shortcuts, and their lack of robustness to irrelevant confounders. When it comes to models directly trained on human faces, a sensitive confounder is that of human identities. Many face-related tasks should ideally be identity-independent, and perform uniformly across different individuals (i.e. be fair). One way to measure and enforce such robustness and performance uniformity is through enforcing it during training, assuming identity-related information is available at scale. However, due to privacy concerns and also the cost of collecting such information, this is often not the case, and most face datasets simply contain input images and their corresponding task-related labels. Thus, improving identity-related robustness without the need for such annotations is of great importance. Here, we explore using face-recognition embedding vectors, as proxies for identities, to enforce such robustness. We propose to use the structure in the face-recognition embedding space, to implicitly emphasize rare samples within each class. We do so by weighting samples according to their conditional inverse density (CID) in the proxy embedding space. Our experiments suggest that such a simple sample weighting scheme, not only improves the training robustness, it often improves the overall performance as a result of such robustness. We also show that employing such constraints during training results in models that are significantly less sensitive to different levels of bias in the dataset.
Recent results of machine learning for automatic vulnerability detection have been very promising indeed: Given only the source code of a function $f$, models trained by machine learning techniques can decide if $f$ contains a security flaw with up to 70% accuracy. But how do we know that these results are general and not specific to the datasets? To study this question, researchers proposed to amplify the testing set by injecting semantic preserving changes and found that the model's accuracy significantly drops. In other words, the model uses some unrelated features during classification. In order to increase the robustness of the model, researchers proposed to train on amplified training data, and indeed model accuracy increased to previous levels. In this paper, we replicate and continue this investigation, and provide an actionable model benchmarking methodology to help researchers better evaluate advances in machine learning for vulnerability detection. Specifically, we propose (i) a cross validation algorithm, where a semantic preserving transformation is applied during the amplification of either the training set or the testing set, and (ii) the amplification of the testing set with code snippets where the vulnerabilities are fixed. Using 11 transformations, 3 ML techniques, and 2 datasets, we find that the improved robustness only applies to the specific transformations used during training data amplification. In other words, the robustified models still rely on unrelated features for predicting the vulnerabilities in the testing data. Additionally, we find that the trained models are unable to generalize to the modified setting which requires to distinguish vulnerable functions from their patches.
Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of such perception system especially for the sake of path planning, motion prediction, collision avoidance, etc. Generally, stereo or monocular images with corresponding 3D point clouds are already standard layout for 3D object detection, out of which point clouds are increasingly prevalent with accurate depth information being provided. Despite existing efforts, 3D object detection on point clouds is still in its infancy due to high sparseness and irregularity of point clouds by nature, misalignment view between camera view and LiDAR bird's eye of view for modality synergies, occlusions and scale variations at long distances, etc. Recently, profound progress has been made in 3D object detection, with a large body of literature being investigated to address this vision task. As such, we present a comprehensive review of the latest progress in this field covering all the main topics including sensors, fundamentals, and the recent state-of-the-art detection methods with their pros and cons. Furthermore, we introduce metrics and provide quantitative comparisons on popular public datasets. The avenues for future work are going to be judiciously identified after an in-deep analysis of the surveyed works. Finally, we conclude this paper.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.
Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. A network based on our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code and models will be made publicly available.
Generic object detection, aiming at locating object instances from a large number of predefined categories in natural images, is one of the most fundamental and challenging problems in computer vision. Deep learning techniques have emerged in recent years as powerful methods for learning feature representations directly from data, and have led to remarkable breakthroughs in the field of generic object detection. Given this time of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought by deep learning techniques. More than 250 key contributions are included in this survey, covering many aspects of generic object detection research: leading detection frameworks and fundamental subproblems including object feature representation, object proposal generation, context information modeling and training strategies; evaluation issues, specifically benchmark datasets, evaluation metrics, and state of the art performance. We finish by identifying promising directions for future research.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.
Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.