亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Adversarial attacks insert small, imperceptible perturbations to input samples that cause large, undesired changes to the output of deep learning models. Despite extensive research on generating adversarial attacks and building defense systems, there has been limited research on understanding adversarial attacks from an input-data perspective. This work introduces the notion of sample attackability, where we aim to identify samples that are most susceptible to adversarial attacks (attackable samples) and conversely also identify the least susceptible samples (robust samples). We propose a deep-learning-based method to detect the adversarially attackable and robust samples in an unseen dataset for an unseen target model. Experiments on standard image classification datasets enables us to assess the portability of the deep attackability detector across a range of architectures. We find that the deep attackability detector performs better than simple model uncertainty-based measures for identifying the attackable/robust samples. This suggests that uncertainty is an inadequate proxy for measuring sample distance to a decision boundary. In addition to better understanding adversarial attack theory, it is found that the ability to identify the adversarially attackable and robust samples has implications for improving the efficiency of sample-selection tasks, e.g. active learning in augmentation for adversarial training.

相關內容

Backdoors implanted in pre-trained language models (PLMs) can be transferred to various downstream tasks, which exposes a severe security threat. However, most existing backdoor attacks against PLMs are un-targeted and task-specific. Few targeted and task-agnostic methods use manually pre-defined triggers and output representations, which prevent the attacks from being more effective and general. In this paper, we first summarize the requirements that a more threatening backdoor attack against PLMs should satisfy, and then propose a new backdoor attack method called UOR, which breaks the bottleneck of the previous approach by turning manual selection into automatic optimization. Specifically, we define poisoned supervised contrastive learning which can automatically learn the more uniform and universal output representations of triggers for various PLMs. Moreover, we use gradient search to select appropriate trigger words which can be adaptive to different PLMs and vocabularies. Experiments show that our method can achieve better attack performance on various text classification tasks compared to manual methods. Further, we tested our method on PLMs with different architectures, different usage paradigms, and more difficult tasks, which demonstrated the universality of our method.

Kernel two-sample tests have been widely used for multivariate data in testing equal distribution. However, existing tests based on mapping distributions into a reproducing kernel Hilbert space are mainly targeted at specific alternatives and do not work well for some scenarios when the dimension of the data is moderate to high due to the curse of dimensionality. We propose a new test statistic that makes use of a common pattern under moderate and high dimensions and achieves substantial power improvements over existing kernel two-sample tests for a wide range of alternatives. We also propose alternative testing procedures that maintain high power with low computational cost, offering easy off-the-shelf tools for large datasets. The new approaches are compared to other state-of-the-art tests under various settings and show good performance. The new approaches are illustrated on two applications: The comparison of musks and non-musks using the shape of molecules, and the comparison of taxi trips started from John F.Kennedy airport in consecutive months. All proposed methods are implemented in an R package kerTests.

Many existing adversarial attacks generate $L_p$-norm perturbations on image RGB space. Despite some achievements in transferability and attack success rate, the crafted adversarial examples are easily perceived by human eyes. Towards visual imperceptibility, some recent works explore unrestricted attacks without $L_p$-norm constraints, yet lacking transferability of attacking black-box models. In this work, we propose a novel imperceptible and transferable attack by leveraging both the generative and discriminative power of diffusion models. Specifically, instead of direct manipulation in pixel space, we craft perturbations in latent space of diffusion models. Combined with well-designed content-preserving structures, we can generate human-insensitive perturbations embedded with semantic clues. For better transferability, we further "deceive" the diffusion model which can be viewed as an additional recognition surrogate, by distracting its attention away from the target regions. To our knowledge, our proposed method, DiffAttack, is the first that introduces diffusion models into adversarial attack field. Extensive experiments on various model structures (including CNNs, Transformers, MLPs) and defense methods have demonstrated our superiority over other attack methods.

High-dimensional variable selection, with many more covariates than observations, is widely documented in standard regression models, but there are still few tools to address it in non-linear mixed-effects models where data are collected repeatedly on several individuals. In this work, variable selection is approached from a Bayesian perspective and a selection procedure is proposed, combining the use of a spike-and-slab prior and the SAEM algorithm. Similarly to Lasso regression, the set of relevant covariates is selected by exploring a grid of values for the penalisation parameter. The SAEM approach is much faster than a classical MCMC algorithm and our method shows very good selection performances on simulated data. Its flexibility is demonstrated by implementing it for a variety of nonlinear mixed effects models. The usefulness of the proposed method is illustrated on a problem of genetic markers identification, relevant for genomic-assisted selection in plant breeding.

Recently, there is an emerging interest in adversarially training a classifier with a rejection option (also known as a selective classifier) for boosting adversarial robustness. While rejection can incur a cost in many applications, existing studies typically associate zero cost with rejecting perturbed inputs, which can result in the rejection of numerous slightly-perturbed inputs that could be correctly classified. In this work, we study adversarially-robust classification with rejection in the stratified rejection setting, where the rejection cost is modeled by rejection loss functions monotonically non-increasing in the perturbation magnitude. We theoretically analyze the stratified rejection setting and propose a novel defense method -- Adversarial Training with Consistent Prediction-based Rejection (CPR) -- for building a robust selective classifier. Experiments on image datasets demonstrate that the proposed method significantly outperforms existing methods under strong adaptive attacks. For instance, on CIFAR-10, CPR reduces the total robust loss (for different rejection losses) by at least 7.3% under both seen and unseen attacks.

Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

We construct targeted audio adversarial examples on automatic speech recognition. Given any audio waveform, we can produce another that is over 99.9% similar, but transcribes as any phrase we choose (at a rate of up to 50 characters per second). We apply our iterative optimization-based attack to Mozilla's implementation DeepSpeech end-to-end, and show it has a 100% success rate. The feasibility of this attack introduce a new domain to study adversarial examples.

北京阿比特科技有限公司