This work provides empirical evidence that Mamba, a newly proposed selective structured state space model, has similar in-context learning (ICL) capabilities as transformers. We evaluated Mamba on tasks involving simple function approximation as well as more complex natural language processing problems. Our results demonstrate that across both categories of tasks, Mamba matches the performance of transformer models for ICL. Further analysis reveals that like transformers, Mamba appears to solve ICL problems by incrementally optimizing its internal representations. Overall, our work suggests that Mamba can be an efficient alternative to transformers for ICL tasks involving longer input sequences.
Large vision language models, such as CLIPs, have revolutionized modern machine learning. CLIPs have demonstrated great generalizability under distribution shifts, supported by an increasing body of literature. However, the evaluation datasets for CLIPs are variations primarily designed for ImageNet benchmarks, which may not fully reflect the extent to which CLIPs, e.g., pre-trained on LAION, robust to spurious correlations. To bridge the gap, we collect a real-world dataset called CounterAnimal that contains realistic spurious features found in animal photos. CounterAnimal consists of a) the common group: comprising animals on common backgrounds, and b) the counter group: including animals on unusual backgrounds. The performance drops from the common to counter groups quantify the reliance of models on spurious features (i.e., backgrounds) to predict the animals. We find that CLIPs trained on either LAION or the OpenAI data exhibit notable performance drops on the counter group. Surprisingly, we observe that single-modal models trained on ImageNet are more robust than CLIPs. We provide both theoretical and empirical explanations for why CLIPs still learn spurious features. Our findings suggest that distribution shifts remain an open problem for CLIPs, and one needs to be cautious about test setups when evaluating foundation models pre-trained on a significantly different scale and distribution.
In the realm of machine learning, traditional model development and automated approaches like AutoML typically rely on layers of abstraction, such as tree-based or Cartesian genetic programming. Our study introduces "Guided Evolution" (GE), a novel framework that diverges from these methods by utilizing Large Language Models (LLMs) to directly modify code. GE leverages LLMs for a more intelligent, supervised evolutionary process, guiding mutations and crossovers. Our unique "Evolution of Thought" (EoT) technique further enhances GE by enabling LLMs to reflect on and learn from the outcomes of previous mutations. This results in a self-sustaining feedback loop that augments decision-making in model evolution. GE maintains genetic diversity, crucial for evolutionary algorithms, by leveraging LLMs' capability to generate diverse responses from expertly crafted prompts and modulate model temperature. This not only accelerates the evolution process but also injects expert like creativity and insight into the process. Our application of GE in evolving the ExquisiteNetV2 model demonstrates its efficacy: the LLM-driven GE autonomously produced variants with improved accuracy, increasing from 92.52% to 93.34%, without compromising model compactness. This underscores the potential of LLMs to accelerate the traditional model design pipeline, enabling models to autonomously evolve and enhance their own designs.
Visual-language models (VLMs) have recently been introduced in robotic mapping by using the latent representations, i.e., embeddings, of the VLMs to represent the natural language semantics in the map. The main benefit is moving beyond a small set of human-created labels toward open-vocabulary scene understanding. While there is anecdotal evidence that maps built this way support downstream tasks, such as navigation, rigorous analysis of the quality of the maps using these embeddings is lacking. We investigate two critical properties of map quality: queryability and consistency. The evaluation of queryability addresses the ability to retrieve information from the embeddings. We investigate two aspects of consistency: intra-map consistency and inter-map consistency. Intra-map consistency captures the ability of the embeddings to represent abstract semantic classes, and inter-map consistency captures the generalization properties of the representation. In this paper, we propose a way to analyze the quality of maps created using VLMs, which forms an open-source benchmark to be used when proposing new open-vocabulary map representations. We demonstrate the benchmark by evaluating the maps created by two state-of-the-art methods, VLMaps and OpenScene, using two encoders, LSeg and OpenSeg, using real-world data from the Matterport3D data set. We find that OpenScene outperforms VLMaps with both encoders, and LSeg outperforms OpenSeg with both methods.
Vessel trajectory clustering, which aims to find similar trajectory patterns, has been widely leveraged in overwater applications. Most traditional methods use predefined rules and thresholds to identify discrete vessel behaviors. They aim for high-quality clustering and conduct clustering on entire sequences, whether the original trajectory or its sub-trajectories, failing to represent their evolution. To resolve this problem, we propose a Predictive Clustering of Hierarchical Vessel Behavior (PC-HiV). PC-HiV first uses hierarchical representations to transform every trajectory into a behavioral sequence. Then, it predicts evolution at each timestamp of the sequence based on the representations. By applying predictive clustering and latent encoding, PC-HiV improves clustering and predictions simultaneously. Experiments on real AIS datasets demonstrate PC-HiV's superiority over existing methods, showcasing its effectiveness in capturing behavioral evolution discrepancies between vessel types (tramp vs. liner) and within emission control areas. Results show that our method outperforms NN-Kmeans and Robust DAA by 3.9% and 6.4% of the purity score.
Transformers pretrained on diverse tasks exhibit remarkable in-context learning (ICL) capabilities, enabling them to solve unseen tasks solely based on input contexts without adjusting model parameters. In this paper, we study ICL in one of its simplest setups: pretraining a linearly parameterized single-layer linear attention model for linear regression with a Gaussian prior. We establish a statistical task complexity bound for the attention model pretraining, showing that effective pretraining only requires a small number of independent tasks. Furthermore, we prove that the pretrained model closely matches the Bayes optimal algorithm, i.e., optimally tuned ridge regression, by achieving nearly Bayes optimal risk on unseen tasks under a fixed context length. These theoretical findings complement prior experimental research and shed light on the statistical foundations of ICL.
We design a concept for an autonomous underground freight transport system for Hanover, Germany. To evaluate the resulting system changes in overall traffic flows from an environmental perspective, we carried out an agent-based traffic simulation with MATSim. Our simulations indicate comparatively low impacts on network-wide traffic volumes. Local CO2 emissions, on the other hand, could be reduced by up to 32 %. In total, the shuttle system can replace more than 18 % of the vehicles in use with conventional combustion engines. Thus, an autonomous underground freight transportation system can contribute to environmentally friendly and economical transportation of urban goods on the condition of cooperative use of the system.
Despite the recent success of automatic metrics for assessing translation quality, their application in evaluating the quality of machine-translated chats has been limited. Unlike more structured texts like news, chat conversations are often unstructured, short, and heavily reliant on contextual information. This poses questions about the reliability of existing sentence-level metrics in this domain as well as the role of context in assessing the translation quality. Motivated by this, we conduct a meta-evaluation of existing sentence-level automatic metrics, primarily designed for structured domains such as news, to assess the quality of machine-translated chats. We find that reference-free metrics lag behind reference-based ones, especially when evaluating translation quality in out-of-English settings. We then investigate how incorporating conversational contextual information in these metrics affects their performance. Our findings show that augmenting neural learned metrics with contextual information helps improve correlation with human judgments in the reference-free scenario and when evaluating translations in out-of-English settings. Finally, we propose a new evaluation metric, Context-MQM, that utilizes bilingual context with a large language model (LLM) and further validate that adding context helps even for LLM-based evaluation metrics.
Developing an optimal PAC learning algorithm in the realizable setting, where empirical risk minimization (ERM) is suboptimal, was a major open problem in learning theory for decades. The problem was finally resolved by Hanneke a few years ago. Unfortunately, Hanneke's algorithm is quite complex as it returns the majority vote of many ERM classifiers that are trained on carefully selected subsets of the data. It is thus a natural goal to determine the simplest algorithm that is optimal. In this work we study the arguably simplest algorithm that could be optimal: returning the majority vote of three ERM classifiers. We show that this algorithm achieves the optimal in-expectation bound on its error which is provably unattainable by a single ERM classifier. Furthermore, we prove a near-optimal high-probability bound on this algorithm's error. We conjecture that a better analysis will prove that this algorithm is in fact optimal in the high-probability regime.
Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.
Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.