Unsupervised domain adaptation object detection(UDAOD) research on Detection Transformer(DETR) mainly focuses on feature alignment and existing methods can be divided into two kinds, each of which has its unresolved issues. One-stage feature alignment methods can easily lead to performance fluctuation and training stagnation. Two-stage feature alignment method based on mean teacher comprises a pretraining stage followed by a self-training stage, each facing problems in obtaining reliable pretrained model and achieving consistent performance gains. Methods mentioned above have not yet explore how to utilize the third related domain such as target-like domain to assist adaptation. To address these issues, we propose a two-stage framework named MTM, i.e. Mean Teacher-DETR with Masked Feature Alignment. In the pretraining stage, we utilize labeled target-like images produced by image style transfer to avoid performance fluctuation. In the self-training stage, we leverage unlabeled target images by pseudo labels based on mean teacher and propose a module called Object Queries Knowledge Transfer(OQKT) to ensure consistent performance gains of the student model. Most importantly, we propose masked feature alignment methods including Masked Domain Query-based Feature Alignment(MDQFA) and Masked Token-wise Feature Alignment(MTWFA) to alleviate domain shift in a more robust way, which not only prevent training stagnation and lead to a robust pretrained model in the pretraining stage, but also enhance the model's target performance in the self-training stage. Experiments on three challenging scenarios and a theoretical analysis verify the effectiveness of MTM.
There has been abundant work in unsupervised domain adaptation for semantic segmentation (DAS) seeking to adapt a model trained on images from a labeled source domain to an unlabeled target domain. While the vast majority of prior work has studied this as a frame-level Image-DAS problem, a few Video-DAS works have sought to additionally leverage the temporal signal present in adjacent frames. However, Video-DAS works have historically studied a distinct set of benchmarks from Image-DAS, with minimal cross-benchmarking. In this work, we address this gap. Surprisingly, we find that (1) even after carefully controlling for data and model architecture, state-of-the-art Image-DAS methods (HRDA and HRDA+MIC)} outperform Video-DAS methods on established Video-DAS benchmarks (+14.5 mIoU on Viper$\rightarrow$CityscapesSeq, +19.0 mIoU on Synthia$\rightarrow$CityscapesSeq), and (2) naive combinations of Image-DAS and Video-DAS techniques only lead to marginal improvements across datasets. To avoid siloed progress between Image-DAS and Video-DAS, we open-source our codebase with support for a comprehensive set of Video-DAS and Image-DAS methods on a common benchmark. Code available at //github.com/SimarKareer/UnifiedVideoDA
Federated learning (FL) systems face performance challenges in dealing with heterogeneous devices and non-identically distributed data across clients. We propose a dynamic global model aggregation method within Asynchronous Federated Learning (AFL) deployments to address these issues. Our aggregation method scores and adjusts the weighting of client model updates based on their upload frequency to accommodate differences in device capabilities. Additionally, we also immediately provide an updated global model to clients after they upload their local models to reduce idle time and improve training efficiency. We evaluate our approach within an AFL deployment consisting of 10 simulated clients with heterogeneous compute constraints and non-IID data. The simulation results, using the FashionMNIST dataset, demonstrate over 10% and 19% improvement in global model accuracy compared to state-of-the-art methods PAPAYA and FedAsync, respectively. Our dynamic aggregation method allows reliable global model training despite limiting client resources and statistical data heterogeneity. This improves robustness and scalability for real-world FL deployments.
Despite the impressive capabilities of Multimodal Large Language Models (MLLMs) in integrating text and image modalities, challenges remain in accurately interpreting detailed visual elements. This paper presents an empirical study on enhancing MLLMs with state-of-the-art (SOTA) object detection and Optical Character Recognition models to improve fine-grained image understanding and reduce hallucination in responses. Our research investigates the embedding-based infusion of detection information, the impact of such infusion on the MLLMs' original abilities, and the interchangeability of detection models. We conduct systematic experiments with models such as LLaVA-1.5, DINO, and PaddleOCRv2, revealing that our approach not only refines MLLMs' performance in specific visual tasks but also maintains their original strengths. The resulting enhanced MLLMs outperform SOTA models on 9 out of 10 benchmarks, achieving an improvement of up to 12.99% on the normalized average score, marking a notable advancement in multimodal understanding. We release our codes to facilitate further exploration into the fine-grained multimodal dialogue capabilities of MLLMs.
Learning robot navigation strategies among pedestrian is crucial for domain based applications. Combining perception, planning and prediction allows us to model the interactions between robots and pedestrians, resulting in impressive outcomes especially with recent approaches based on deep reinforcement learning (RL). However, these works do not consider multi-robot scenarios. In this paper, we present MultiSoc, a new method for learning multi-agent socially aware navigation strategies using RL. Inspired by recent works on multi-agent deep RL, our method leverages graph-based representation of agent interactions, combining the positions and fields of view of entities (pedestrians and agents). Each agent uses a model based on two Graph Neural Network combined with attention mechanisms. First an edge-selector produces a sparse graph, then a crowd coordinator applies node attention to produce a graph representing the influence of each entity on the others. This is incorporated into a model-free RL framework to learn multi-agent policies. We evaluate our approach on simulation and provide a series of experiments in a set of various conditions (number of agents / pedestrians). Empirical results show that our method learns faster than social navigation deep RL mono-agent techniques, and enables efficient multi-agent implicit coordination in challenging crowd navigation with multiple heterogeneous humans. Furthermore, by incorporating customizable meta-parameters, we can adjust the neighborhood density to take into account in our navigation strategy.
In real-world applications, there is often a domain shift from training to test data. This observation resulted in the development of test-time adaptation (TTA). It aims to adapt a pre-trained source model to the test data without requiring access to the source data. Thereby, most existing works are limited to the closed-set assumption, i.e. there is no category shift between source and target domain. We argue that in a realistic open-world setting a category shift can appear in addition to a domain shift. This means, individual source classes may not appear in the target domain anymore, samples of new classes may be part of the target domain or even both at the same time. Moreover, in many real-world scenarios the test data is not accessible all at once but arrives sequentially as a stream of batches demanding an immediate prediction. Hence, TTA must be applied in an online manner. To the best of our knowledge, the combination of these aspects, i.e. online source-free universal domain adaptation (online SF-UniDA), has not been studied yet. In this paper, we introduce a Contrastive Mean Teacher (COMET) tailored to this novel scenario. It applies a contrastive loss to rebuild a feature space where the samples of known classes build distinct clusters and the samples of new classes separate well from them. It is complemented by an entropy loss which ensures that the classifier output has a small entropy for samples of known classes and a large entropy for samples of new classes to be easily detected and rejected as unknown. To provide the losses with reliable pseudo labels, they are embedded into a mean teacher (MT) framework. We evaluate our method across two datasets and all category shifts to set an initial benchmark for online SF-UniDA. Thereby, COMET yields state-of-the-art performance and proves to be consistent and robust across a variety of different scenarios.
This paper introduces LeTO, a method for learning constrained visuomotor policy via differentiable trajectory optimization. Our approach uniquely integrates a differentiable optimization layer into the neural network. By formulating the optimization layer as a trajectory optimization problem, we enable the model to end-to-end generate actions in a safe and controlled fashion without extra modules. Our method allows for the introduction of constraints information during the training process, thereby balancing the training objectives of satisfying constraints, smoothing the trajectories, and minimizing errors with demonstrations. This "gray box" method marries the optimization-based safety and interpretability with the powerful representational abilities of neural networks. We quantitatively evaluate LeTO in simulation and on the real robot. In simulation, LeTO achieves a success rate comparable to state-of-the-art imitation learning methods, but the generated trajectories are of less uncertainty, higher quality, and smoother. In real-world experiments, we deployed LeTO to handle constraints-critical tasks. The results show the effectiveness of LeTO comparing with state-of-the-art imitation learning approaches. We release our code at //github.com/ZhengtongXu/LeTO.
We present four main contributions to enhance the performance of Large Language Models (LLMs) in generating domain-specific code: (i) utilizing LLM-based data splitting and data renovation techniques to improve the semantic representation of embeddings' space; (ii) introducing the Chain of Density for Renovation Credibility (CoDRC), driven by LLMs, and the Adaptive Text Renovation (ATR) algorithm for assessing data renovation reliability; (iii) developing the Implicit Knowledge Expansion and Contemplation (IKEC) Prompt technique; and (iv) effectively refactoring existing scripts to generate new and high-quality scripts with LLMs. By using engineering simulation software RedHawk-SC as a case study, we demonstrate the effectiveness of our data pre-processing method for expanding and categorizing scripts. When combined with IKEC, these techniques enhance the Retrieval-Augmented Generation (RAG) method in retrieving more relevant information, ultimately achieving a 73.33% "Percentage of Correct Lines" for code generation problems in MapReduce applications.
With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity is readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyse and interpret these strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyse the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.
As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.
Collecting supporting evidence from large corpora of text (e.g., Wikipedia) is of great challenge for open-domain Question Answering (QA). Especially, for multi-hop open-domain QA, scattered evidence pieces are required to be gathered together to support the answer extraction. In this paper, we propose a new retrieval target, hop, to collect the hidden reasoning evidence from Wikipedia for complex question answering. Specifically, the hop in this paper is defined as the combination of a hyperlink and the corresponding outbound link document. The hyperlink is encoded as the mention embedding which models the structured knowledge of how the outbound link entity is mentioned in the textual context, and the corresponding outbound link document is encoded as the document embedding representing the unstructured knowledge within it. Accordingly, we build HopRetriever which retrieves hops over Wikipedia to answer complex questions. Experiments on the HotpotQA dataset demonstrate that HopRetriever outperforms previously published evidence retrieval methods by large margins. Moreover, our approach also yields quantifiable interpretations of the evidence collection process.