Diabetic retinopathy (DR) is a leading global cause of blindness. Early detection of hard exudates plays a crucial role in identifying DR, which aids in treating diabetes and preventing vision loss. However, the unique characteristics of hard exudates, ranging from their inconsistent shapes to indistinct boundaries, pose significant challenges to existing segmentation techniques. To address these issues, we present a novel supervised contrastive learning framework to optimize hard exudate segmentation. Specifically, we introduce a patch-wise density contrasting scheme to distinguish between areas with varying lesion concentrations, and therefore improve the model's proficiency in segmenting small lesions. To handle the ambiguous boundaries, we develop a discriminative edge inspection module to dynamically analyze the pixels that lie around the boundaries and accurately delineate the exudates. Upon evaluation using the IDRiD dataset and comparison with state-of-the-art frameworks, our method exhibits its effectiveness and shows potential for computer-assisted hard exudate detection. The code to replicate experiments is available at github.com/wetang7/HECL/.
Evolutionary multitasking (EMT) has emerged as a popular topic of evolutionary computation over the past years. It aims to concurrently address multiple optimization tasks within limited computing resources, leveraging inter-task knowledge transfer techniques. Despite the abundance of multitask evolutionary algorithms (MTEAs) proposed for multitask optimization (MTO), there remains a comprehensive software platform to help researchers evaluate MTEA performance on benchmark MTO problems as well as explore real-world applications. To bridge this gap, we introduce the first open-source optimization platform, named MTO-Platform (MToP), for EMT. MToP incorporates over 40 MTEAs, more than 150 MTO problem cases with real-world applications, and over 10 performance metrics. Moreover, to facilitate comparative analyses between MTEAs and traditional evolutionary algorithms, we adapted over 40 popular single-task evolutionary algorithms to address MTO problems. MToP boasts a user-friendly graphical interface, facilitating results analysis, data export, and schematics visualization. More importantly, MToP is designed with extensibility in mind, allowing users to develop new algorithms and tackle emerging problem domains. The source code of MToP is available at //github.com/intLyc/MTO-Platform.
Imitation Learning (IL) is a promising paradigm for teaching robots to perform novel tasks using demonstrations. Most existing approaches for IL utilize neural networks (NN), however, these methods suffer from several well-known limitations: they 1) require large amounts of training data, 2) are hard to interpret, and 3) are hard to repair and adapt. There is an emerging interest in programmatic imitation learning (PIL), which offers significant promise in addressing the above limitations. In PIL, the learned policy is represented in a programming language, making it amenable to interpretation and repair. However, state-of-the-art PIL algorithms assume access to action labels and struggle to learn from noisy real-world demonstrations. In this paper, we propose PLUNDER, a novel PIL algorithm that integrates a probabilistic program synthesizer in an iterative Expectation-Maximization (EM) framework to address these shortcomings. Unlike existing PIL approaches, PLUNDER synthesizes probabilistic programmatic policies that are particularly well-suited for modeling the uncertainties inherent in real-world demonstrations. Our approach leverages an EM loop to simultaneously infer the missing action labels and the most likely probabilistic policy. We benchmark PLUNDER against several established IL techniques, and demonstrate its superiority across five challenging imitation learning tasks under noise. PLUNDER policies achieve 95% accuracy in matching the given demonstrations, outperforming the next best baseline by 19%. Additionally, policies generated by PLUNDER successfully complete the tasks 17% more frequently than the nearest baseline.
Learning from Demonstration (LfD) is a promising approach to enable Multi-Robot Systems (MRS) to acquire complex skills and behaviors. However, the intricate interactions and coordination challenges in MRS pose significant hurdles for effective LfD. In this paper, we present a novel LfD framework specifically designed for MRS, which leverages visual demonstrations to capture and learn from robot-robot and robot-object interactions. Our framework introduces the concept of Interaction Keypoints (IKs) to transform the visual demonstrations into a representation that facilitates the inference of various skills necessary for the task. The robots then execute the task using sensorimotor actions and reinforcement learning (RL) policies when required. A key feature of our approach is the ability to handle unseen contact-based skills that emerge during the demonstration. In such cases, RL is employed to learn the skill using a classifier-based reward function, eliminating the need for manual reward engineering and ensuring adaptability to environmental changes. We evaluate our framework across a range of mobile robot tasks, covering both behavior-based and contact-based domains. The results demonstrate the effectiveness of our approach in enabling robots to learn complex multi-robot tasks and behaviors from visual demonstrations.
The uplink sum-throughput of distributed massive multiple-input-multiple-output (mMIMO) networks depends majorly on Access point (AP)-User Equipment (UE) association and power control. The AP-UE association and power control both are important problems in their own right in distributed mMIMO networks to improve scalability and reduce front-haul load of the network, and to enhance the system performance by mitigating the interference and boosting the desired signals, respectively. Unlike previous studies, which focused primarily on addressing these two problems separately, this work addresses the uplink sum-throughput maximization problem in distributed mMIMO networks by solving the joint AP-UE association and power control problem, while maintaining Quality-of-Service (QoS) requirements for each UE. To improve scalability, we present an l1-penalty function that delicately balances the trade-off between spectral efficiency (SE) and front-haul signaling load. Our proposed methodology leverages fractional programming, Lagrangian dual formation, and penalty functions to provide an elegant and effective iterative solution with guaranteed convergence. Extensive numerical simulations validate the efficacy of the proposed technique for maximizing sum-throughput while considering the joint AP-UE association and power control problem, demonstrating its superiority over approaches that address these problems individually. Furthermore, the results show that the introduced penalty function can help us effectively control the maximum front-haul load.
In resource contribution games, a class of non-cooperative games, the players want to obtain a bundle of resources and are endowed with bags of bundles of resources that they can make available into a common for all to enjoy. Available resources can then be used towards their private goals. A player is potentially satisfied with a profile of contributed resources when his bundle could be extracted from the contributed resources. Resource contention occurs when the players who are potentially satisfied, cannot actually all obtain their bundle. The player's preferences are always single-minded (they consider a profile good or they do not) and parsimonious (between two profiles that are equally good, they prefer the profile where they contribute less). What makes a profile of contributed resources good for a player depends on their attitude towards resource contention. We study the problem of deciding whether an outcome is a pure Nash equilibrium for three kinds of players' attitudes towards resource contention: public contention-aversity, private contention-aversity, and contention-tolerance. In particular, we demonstrate that in the general case when the players are contention-averse, then the problem is harder than when they are contention-tolerant. We then identify a natural class of games where, in presence of contention-averse preferences, it becomes tractable, and where there is always a Nash equilibrium.
Diabetic Retinopathy (DR) stands as the leading cause of blindness globally, particularly affecting individuals between the ages of 20 and 70. This paper presents a Computer-Aided Diagnosis (CAD) system designed for the automatic classification of retinal images into five distinct classes: Normal, Mild, Moderate, Severe, and Proliferative Diabetic Retinopathy (PDR). The proposed system leverages Convolutional Neural Networks (CNNs) employing pre-trained deep learning models. Through the application of fine-tuning techniques, our model is trained on fundus images of diabetic retinopathy with resolutions of 350x350x3 and 224x224x3. Experimental results obtained on the Kaggle platform, utilizing resources comprising 4 CPUs, 17 GB RAM, and 1 GB Disk, demonstrate the efficacy of our approach. The achieved Area Under the Curve (AUC) values for CNN, MobileNet, VGG-16, InceptionV3, and InceptionResNetV2 models are 0.50, 0.70, 0.53, 0.63, and 0.69, respectively.
The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.
Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.