亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Simulation-based inference (SBI) methods tackle complex scientific models with challenging inverse problems. However, SBI models often face a significant hurdle due to their non-differentiable nature, which hampers the use of gradient-based optimization techniques. Bayesian Optimal Experimental Design (BOED) is a powerful approach that aims to make the most efficient use of experimental resources for improved inferences. While stochastic gradient BOED methods have shown promising results in high-dimensional design problems, they have mostly neglected the integration of BOED with SBI due to the difficult non-differentiable property of many SBI simulators. In this work, we establish a crucial connection between ratio-based SBI inference algorithms and stochastic gradient-based variational inference by leveraging mutual information bounds. This connection allows us to extend BOED to SBI applications, enabling the simultaneous optimization of experimental designs and amortized inference functions. We demonstrate our approach on a simple linear model and offer implementation details for practitioners.

相關內容

Diffusion models (DMs) have recently been introduced in image deblurring and exhibited promising performance, particularly in terms of details reconstruction. However, the diffusion model requires a large number of inference iterations to recover the clean image from pure Gaussian noise, which consumes massive computational resources. Moreover, the distribution synthesized by the diffusion model is often misaligned with the target results, leading to restrictions in distortion-based metrics. To address the above issues, we propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring. Specifically, we perform the DM in a highly compacted latent space to generate the prior feature for the deblurring process. The deblurring process is implemented by a regression-based method to obtain better distortion accuracy. Meanwhile, the highly compact latent space ensures the efficiency of the DM. Furthermore, we design the hierarchical integration module to fuse the prior into the regression-based model from multiple scales, enabling better generalization in complex blurry scenarios. Comprehensive experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods. Code and trained models are available at //github.com/zhengchen1999/HI-Diff.

We analysis performance of semantic segmentation models wrt. adversarial attacks, and observe that the adversarial examples generated from a source model fail to attack the target models. i.e The conventional attack methods, such as PGD and FGSM, do not transfer well to target models, making it necessary to study the transferable attacks, especially transferable attacks for semantic segmentation. We find two main factors to achieve transferable attack. Firstly, the attack should come with effective data augmentation and translation-invariant features to deal with unseen models. Secondly, stabilized optimization strategies are needed to find the optimal attack direction. Based on the above observations, we propose an ensemble attack for semantic segmentation to achieve more effective attacks with higher transferability. The source code and experimental results are publicly available via our project page: //github.com/anucvers/TASS.

Counterfactual explanations are an emerging tool to enhance interpretability of deep learning models. Given a sample, these methods seek to find and display to the user similar samples across the decision boundary. In this paper, we propose a generative adversarial counterfactual approach for satellite image time series in a multi-class setting for the land cover classification task. One of the distinctive features of the proposed approach is the lack of prior assumption on the targeted class for a given counterfactual explanation. This inherent flexibility allows for the discovery of interesting information on the relationship between land cover classes. The other feature consists of encouraging the counterfactual to differ from the original sample only in a small and compact temporal segment. These time-contiguous perturbations allow for a much sparser and, thus, interpretable solution. Furthermore, plausibility/realism of the generated counterfactual explanations is enforced via the proposed adversarial learning strategy.

The introduction of large language models (LLMs) like ChatGPT and Google Palm2 for smart contract generation seems to be the first well-established instance of an AI pair programmer. LLMs have access to a large number of open-source smart contracts, enabling them to utilize more extensive code in Solidity than other code generation tools. Although the initial and informal assessments of LLMs for smart contract generation are promising, a systematic evaluation is needed to explore the limits and benefits of these models. The main objective of this study is to assess the quality of generated code provided by LLMs for smart contracts. We also aim to evaluate the impact of the quality and variety of input parameters fed to LLMs. To achieve this aim, we created an experimental setup for evaluating the generated code in terms of validity, correctness, and efficiency. Our study finds crucial evidence of security bugs getting introduced in the generated smart contracts as well as the overall quality and correctness of the code getting impacted. However, we also identified the areas where it can be improved. The paper also proposes several potential research directions to improve the process, quality and safety of generated smart contract codes.

Deep Operator Network (DeepONet), a recently introduced deep learning operator network, approximates linear and nonlinear solution operators by taking parametric functions (infinite-dimensional objects) as inputs and mapping them to solution functions in contrast to classical neural networks that need re-training for every new set of parametric inputs. In this work, we have extended the classical formulation of DeepONets by introducing sequential learning models like the gated recurrent unit (GRU) and long short-term memory (LSTM) in the branch network to allow for accurate predictions of the solution contour plots under parametric and time-dependent loading histories. Two example problems, one on transient heat transfer and the other on path-dependent plastic loading, were shown to demonstrate the capabilities of the new architectures compared to the benchmark DeepONet model with a feed-forward neural network (FNN) in the branch. Despite being more computationally expensive, the GRU- and LSTM-DeepONets lowered the prediction error by half (0.06\% vs. 0.12\%) compared to FNN-DeepONet in the heat transfer problem, and by 2.5 times (0.85\% vs. 3\%) in the plasticity problem. In all cases, the proposed DeepONets achieved a prediction $R^2$ value of above 0.995, indicating superior accuracy. Results show that once trained, the proposed DeepONets can accurately predict the final full-field solution over the entire domain and are at least two orders of magnitude faster than direct finite element simulations, rendering it an accurate and robust surrogate model for rapid preliminary evaluations.

Graph representation learning (GRL) methods, such as graph neural networks and graph transformer models, have been successfully used to analyze graph-structured data, mainly focusing on node classification and link prediction tasks. However, the existing studies mostly only consider local connectivity while ignoring long-range connectivity and the roles of nodes. In this paper, we propose Unified Graph Transformer Networks (UGT) that effectively integrate local and global structural information into fixed-length vector representations. First, UGT learns local structure by identifying the local substructures and aggregating features of the $k$-hop neighborhoods of each node. Second, we construct virtual edges, bridging distant nodes with structural similarity to capture the long-range dependencies. Third, UGT learns unified representations through self-attention, encoding structural distance and $p$-step transition probability between node pairs. Furthermore, we propose a self-supervised learning task that effectively learns transition probability to fuse local and global structural features, which could then be transferred to other downstream tasks. Experimental results on real-world benchmark datasets over various downstream tasks showed that UGT significantly outperformed baselines that consist of state-of-the-art models. In addition, UGT reaches the expressive power of the third-order Weisfeiler-Lehman isomorphism test (3d-WL) in distinguishing non-isomorphic graph pairs. The source code is available at //github.com/NSLab-CUK/Unified-Graph-Transformer.

Deep learning-based surrogate models have been widely applied in geological carbon storage (GCS) problems to accelerate the prediction of reservoir pressure and CO2 plume migration. Large amounts of data from physics-based numerical simulators are required to train a model to accurately predict the complex physical behaviors associated with this process. In practice, the available training data are always limited in large-scale 3D problems due to the high computational cost. Therefore, we propose to use a multi-fidelity Fourier Neural Operator to solve large-scale GCS problems with more affordable multi-fidelity training datasets. The Fourier Neural Operator has a desirable grid-invariant property, which simplifies the transfer learning procedure between datasets with different discretization. We first test the model efficacy on a GCS reservoir model being discretized into 110k grid cells. The multi-fidelity model can predict with accuracy comparable to a high-fidelity model trained with the same amount of high-fidelity data with 81% less data generation costs. We further test the generalizability of the multi-fidelity model on a same reservoir model with a finer discretization of 1 million grid cells. This case was made more challenging by employing high-fidelity and low-fidelity datasets generated by different geostatistical models and reservoir simulators. We observe that the multi-fidelity FNO model can predict pressure fields with reasonable accuracy even when the high-fidelity data are extremely limited.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

北京阿比特科技有限公司