亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Covariate shift in the test data is a common practical phenomena that can significantly downgrade both the accuracy and the fairness performance of the model. Ensuring fairness across different sensitive groups under covariate shift is of paramount importance due to societal implications like criminal justice. We operate in the unsupervised regime where only a small set of unlabeled test samples along with a labeled training set is available. Towards improving fairness under this highly challenging yet realistic scenario, we make three contributions. First is a novel composite weighted entropy based objective for prediction accuracy which is optimized along with a representation matching loss for fairness. We experimentally verify that optimizing with our loss formulation outperforms a number of state-of-the-art baselines in the pareto sense with respect to the fairness-accuracy tradeoff on several standard datasets. Our second contribution is a new setting we term Asymmetric Covariate Shift that, to the best of our knowledge, has not been studied before. Asymmetric covariate shift occurs when distribution of covariates of one group shifts significantly compared to the other groups and this happens when a dominant group is over-represented. While this setting is extremely challenging for current baselines, We show that our proposed method significantly outperforms them. Our third contribution is theoretical, where we show that our weighted entropy term along with prediction loss on the training set approximates test loss under covariate shift. Empirically and through formal sample complexity bounds, we show that this approximation to the unseen test loss does not depend on importance sampling variance which affects many other baselines.

相關內容

In many information processing systems, it may be desirable to ensure that any change of the input, whether by shifting or scaling, results in a corresponding change in the system response. While deep neural networks are gradually replacing all traditional automatic processing methods, they surprisingly do not guarantee such normalization-equivariance (scale + shift) property, which can be detrimental in many applications. To address this issue, we propose a methodology for adapting existing neural networks so that normalization-equivariance holds by design. Our main claim is that not only ordinary convolutional layers, but also all activation functions, including the ReLU (rectified linear unit), which are applied element-wise to the pre-activated neurons, should be completely removed from neural networks and replaced by better conditioned alternatives. To this end, we introduce affine-constrained convolutions and channel-wise sort pooling layers as surrogates and show that these two architectural modifications do preserve normalization-equivariance without loss of performance. Experimental results in image denoising show that normalization-equivariant neural networks, in addition to their better conditioning, also provide much better generalization across noise levels.

Depth completion is a long-standing challenge in computer vision, where classification-based methods have made tremendous progress in recent years. However, most existing classification-based methods rely on pre-defined pixel-shared and discrete depth values as depth categories. This representation fails to capture the continuous depth values that conform to the real depth distribution, leading to depth smearing in boundary regions. To address this issue, we revisit depth completion from the clustering perspective and propose a novel clustering-based framework called CluDe which focuses on learning the pixel-wise and continuous depth representation. The key idea of CluDe is to iteratively update the pixel-shared and discrete depth representation to its corresponding pixel-wise and continuous counterpart, driven by the real depth distribution. Specifically, CluDe first utilizes depth value clustering to learn a set of depth centers as the depth representation. While these depth centers are pixel-shared and discrete, they are more in line with the real depth distribution compared to pre-defined depth categories. Then, CluDe estimates offsets for these depth centers, enabling their dynamic adjustment along the depth axis of the depth distribution to generate the pixel-wise and continuous depth representation. Extensive experiments demonstrate that CluDe successfully reduces depth smearing around object boundaries by utilizing pixel-wise and continuous depth representation. Furthermore, CluDe achieves state-of-the-art performance on the VOID datasets and outperforms classification-based methods on the KITTI dataset.

Continuous exploration without interruption is important in scenarios such as search and rescue and precision agriculture, where consistent presence is needed to detect events over large areas. Ergodic search already derives continuous trajectories in these scenarios so that a robot spends more time in areas with high information density. However, existing literature on ergodic search does not consider the robot's energy constraints, limiting how long a robot can explore. In fact, if the robots are battery-powered, it is physically not possible to continuously explore on a single battery charge. Our paper tackles this challenge, integrating ergodic search methods with energy-aware coverage. We trade off battery usage and coverage quality, maintaining uninterrupted exploration by at least one agent. Our approach derives an abstract battery model for future state-of-charge estimation and extends canonical ergodic search to ergodic search under battery constraints. Empirical data from simulations and real-world experiments demonstrate the effectiveness of our energy-aware ergodic search, which ensures continuous exploration and guarantees spatial coverage.

Operating robots precisely and at high speeds has been a long-standing goal of robotics research.Balancing these competing demands is key to enabling the seamless collaboration of robots and humans and increasing task performance. However, traditional motor-driven systems often fall short in this balancing act.Due to their rigid and often heavy design exacerbated by positioning the motors into the joints, faster motions of such robots transfer high forces at impact. To enable precise and safe dynamic motions, we introduce a four degree-of-freedom~(DoF) tendon-driven robot arm. Tendons allow placing the actuation at the base to reduce the robot's inertia, which we show significantly reduces peak collision forces compared to conventional motor-driven systems.Pairing our robot with pneumatic muscles allows generating high forces and highly accelerated motions, while benefiting from impact resilience through passive compliance. Since tendons are subject to additional friction and hence prone to tear, we validate the reliability of our robotic arm on various experiments, including long-term dynamic motions. We also demonstrate its ease of control by quantifying the nonlinearities of the system and the performance on a challenging dynamic table tennis task learned from scratch using reinforcement learning. We open-source the entire hardware design, which can be largely 3D printed, the control software, and a proprioceptive dataset of 25 days of diverse robot motions at webdav.tuebingen.mpg.de/pamy2/.

Due to its optimal complexity, the multigrid (MG) method is one of the most popular approaches for solving large-scale linear systems arising from the discretization of partial differential equations. However, the parallel implementation of standard MG methods, which are inherently multiplicative, suffers from increasing communication complexity. In such cases, the additive variants of MG methods provide a good alternative due to their inherently parallel nature, although they exhibit slower convergence. This work combines the additive multigrid method with the multipreconditioned conjugate gradient (MPCG) method. In the proposed approach, the MPCG method employs the corrections from the different levels of the MG hierarchy as separate preconditioned search directions. In this approach, the MPCG method updates the current iterate by using the linear combination of the preconditioned search directions, where the optimal coefficients for the linear combination are computed by exploiting the energy norm minimization of the CG method. The idea behind our approach is to combine the $A$-conjugacy of the search directions of the MPCG method and the quasi $H_1$-orthogonality of the corrections from the MG hierarchy. In the numerical section, we study the performance of the proposed method compared to the standard additive and multiplicative MG methods used as preconditioners for the CG method.

The rise of the Internet and the exponential increase in data have made manual data summarization and analysis a challenging task. Instagram social network is a prominent social network widely utilized in Iran for information sharing and communication across various age groups. The inherent structure of Instagram, characterized by its text-rich content and graph-like data representation, enables the utilization of text and graph processing techniques for data analysis purposes. The degree distributions of these networks exhibit scale-free characteristics, indicating non-random growth patterns. Recently, word co-occurrence has gained attention from researchers across multiple disciplines due to its simplicity and practicality. Keyword extraction is a crucial task in natural language processing. In this study, we demonstrated that high-precision extraction of keywords from Instagram posts in the Persian language can be achieved using unsupervised word co-occurrence methods without resorting to conventional techniques such as clustering or pre-trained models. After graph visualization and community detection, it was observed that the top topics covered by news agencies are represented by these graphs. This approach is generalizable to new and diverse datasets and can provide acceptable outputs for new data. To the author's knowledge, this method has not been employed in the Persian language before on Instagram social network. The new crawled data has been publicly released on GitHub for exploration by other researchers. By employing this method, it is possible to use other graph-based algorithms, such as community detections. The results help us to identify the key role of different news agencies in information diffusion among the public, identify hidden communities, and discover latent patterns among a massive amount of data.

A significant bottleneck in applying current reinforcement learning algorithms to real-world scenarios is the need to reset the environment between every episode. This reset process demands substantial human intervention, making it difficult for the agent to learn continuously and autonomously. Several recent works have introduced autonomous reinforcement learning (ARL) algorithms that generate curricula for jointly training reset and forward policies. While their curricula can reduce the number of required manual resets by taking into account the agent's learning progress, they rely on task-specific knowledge, such as predefined initial states or reset reward functions. In this paper, we propose a novel ARL algorithm that can generate a curriculum adaptive to the agent's learning progress without task-specific knowledge. Our curriculum empowers the agent to autonomously reset to diverse and informative initial states. To achieve this, we introduce a success discriminator that estimates the success probability from each initial state when the agent follows the forward policy. The success discriminator is trained with relabeled transitions in a self-supervised manner. Our experimental results demonstrate that our ARL algorithm can generate an adaptive curriculum and enable the agent to efficiently bootstrap to solve sparse-reward maze navigation and manipulation tasks, outperforming baselines with significantly fewer manual resets.

Elucidating the reasoning process with structured explanations from question to answer is crucial, as it significantly enhances the interpretability, traceability, and trustworthiness of question-answering (QA) systems. However, structured explanations demand models to perform intricately structured reasoning, which poses great challenges. Most existing methods focus on single-step reasoning through supervised learning, ignoring logical dependencies between steps. Moreover, existing reinforcement learning (RL) based methods overlook the structured relationships, underutilizing the potential of RL in structured reasoning. In this paper, we propose SEER, a novel method that maximizes a structure-based return to facilitate structured reasoning and explanation. Our proposed structure-based return precisely describes the hierarchical and branching structure inherent in structured reasoning, effectively capturing the intricate relationships between different reasoning steps. In addition, we introduce a fine-grained reward function to meticulously delineate diverse reasoning steps. Extensive experiments show that SEER significantly outperforms state-of-the-art methods, achieving an absolute improvement of 6.9% over RL-based methods on EntailmentBank, a 4.4% average improvement on STREET benchmark, and exhibiting outstanding efficiency and cross-dataset generalization performance.

We study the use of linear regression for multiclass classification in the over-parametrized regime where some of the training data is mislabeled. In such scenarios it is necessary to add an explicit regularization term, $\lambda f(w)$, for some convex function $f(\cdot)$, to avoid overfitting the mislabeled data. In our analysis, we assume that the data is sampled from a Gaussian Mixture Model with equal class sizes, and that a proportion $c$ of the training labels is corrupted for each class. Under these assumptions, we prove that the best classification performance is achieved when $f(\cdot) = \|\cdot\|^2_2$ and $\lambda \to \infty$. We then proceed to analyze the classification errors for $f(\cdot) = \|\cdot\|_1$ and $f(\cdot) = \|\cdot\|_\infty$ in the large $\lambda$ regime and notice that it is often possible to find sparse and one-bit solutions, respectively, that perform almost as well as the one corresponding to $f(\cdot) = \|\cdot\|_2^2$.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司