Given an unlabeled dataset and an annotation budget, we study how to selectively label a fixed number of instances so that semi-supervised learning (SSL) on such a partially labeled dataset is most effective. We focus on selecting the right data to label, in addition to usual SSL's propagating labels from labeled data to the rest unlabeled data. This instance selection task is challenging, as without any labeled data we do not know what the objective of learning should be. Intuitively, no matter what the downstream task is, instances to be labeled must be representative and diverse: The former would facilitate label propagation to unlabeled data, whereas the latter would ensure coverage of the entire dataset. We capture this idea by selecting cluster prototypes, either in a pretrained feature space, or along with feature optimization, both without labels. Our unsupervised selective labeling consistently improves SSL methods over state-of-the-art active learning given labeled data, by 8 to 25 times in label efficiency. For example, it boosts FixMatch by 10% (14%) in accuracy on CIFAR-10 (ImageNet-1K) with 0.08% (0.2%) labeled data, demonstrating that small computation spent on selecting what data to label brings significant gain especially under a low annotation budget. Our work sets a new standard for practical and efficient SSL.
Rapid development in deep learning model construction has prompted an increased need for appropriate training data. The popularity of large datasets - sometimes known as "big data" - has diverted attention from assessing their quality. Training on large datasets often requires excessive system resources and an infeasible amount of time. Furthermore, the supervised machine learning process has yet to be fully automated: for supervised learning, large datasets require more time for manually labeling samples. We propose a method of curating smaller datasets with comparable out-of-distribution model accuracy after an initial training session using an appropriate distribution of samples classified by how difficult it is for a model to learn from them.
Model-based control requires an accurate model of the system dynamics for precisely and safely controlling the robot in complex and dynamic environments. Moreover, in presence of variations in the operating conditions, the model should be continuously refined to compensate for dynamics changes. In this paper, we propose a self-supervised learning approach to actively model robot discrete-time dynamics. We combine offline learning from past experience and online learning from present robot interaction with the unknown environment. These two ingredients enable highly sample-efficient and adaptive learning for accurate inference of the model dynamics in real-time even in operating regimes significantly different from the training distribution. Moreover, we design an uncertainty-aware model predictive controller that is conditioned to the aleatoric (data) uncertainty of the learned dynamics. The controller actively selects the optimal control actions that (i) optimize the control performance and (ii) boost the online learning sample efficiency. We apply the proposed method to a quadrotor system in multiple challenging real-world experiments. Our approach exhibits high flexibility and generalization capabilities by consistently adapting to unseen flight conditions, while it significantly outperforms classical and adaptive control baselines.
A fundamental task in science is to design experiments that yield valuable insights about the system under study. Mathematically, these insights can be represented as a utility or risk function that shapes the value of conducting each experiment. We present PDBAL, a targeted active learning method that adaptively designs experiments to maximize scientific utility. PDBAL takes a user-specified risk function and combines it with a probabilistic model of the experimental outcomes to choose designs that rapidly converge on a high-utility model. We prove theoretical bounds on the label complexity of PDBAL and provide fast closed-form solutions for designing experiments with common exponential family likelihoods. In simulation studies, PDBAL consistently outperforms standard untargeted approaches that focus on maximizing expected information gain over the design space. Finally, we demonstrate the scientific potential of PDBAL through a study on a large cancer drug screen dataset where PDBAL quickly recovers the most efficacious drugs with a small fraction of the total number of experiments.
Feature selection is used to eliminate redundant features and keep relevant features, it can enhance machine learning algorithm's performance and accelerate computing speed. In various methods, mutual information has attracted increasingly more attention as it's an effective criterion to measure variable correlation. However, current works mainly focus on maximizing the feature relevancy with class label and minimizing the feature redundancy within selected features, we reckon that pursuing feature redundancy minimization is reasonable but not necessary because part of so-called redundant features also carries some useful information to promote performance. In terms of mutual information calculation, it may distort the true relationship between two variables without proper neighborhood partition. Traditional methods usually split the continuous variables into several intervals even ignore such influence. We theoretically prove how variable fluctuation negatively influences mutual information calculation. To remove the referred obstacles, for feature selection method, we propose a full conditional mutual information maximization method (FCMIM) which only considers the feature relevancy in two aspects. For obtaining a better partition effect and eliminating the negative influence of attribute fluctuation, we put up an adaptive neighborhood partition algorithm (ANP) with the feedback of mutual information maximization algorithm, the backpropagation process helps search for a proper neighborhood partition parameter. We compare our method with several mutual information methods on 17 benchmark datasets. Results of FCMIM are better than other methods based on different classifiers. Results show that ANP indeed promotes nearly all the mutual information methods' performance.
Deep neural networks achieve remarkable performances on a wide range of tasks with the aid of large-scale labeled datasets. Yet these datasets are time-consuming and labor-exhaustive to obtain on realistic tasks. To mitigate the requirement for labeled data, self-training is widely used in semi-supervised learning by iteratively assigning pseudo labels to unlabeled samples. Despite its popularity, self-training is well-believed to be unreliable and often leads to training instability. Our experimental studies further reveal that the bias in semi-supervised learning arises from both the problem itself and the inappropriate training with potentially incorrect pseudo labels, which accumulates the error in the iterative self-training process. To reduce the above bias, we propose Debiased Self-Training (DST). First, the generation and utilization of pseudo labels are decoupled by two parameter-independent classifier heads to avoid direct error accumulation. Second, we estimate the worst case of self-training bias, where the pseudo labeling function is accurate on labeled samples, yet makes as many mistakes as possible on unlabeled samples. We then adversarially optimize the representations to improve the quality of pseudo labels by avoiding the worst case. Extensive experiments justify that DST achieves an average improvement of 6.3% against state-of-the-art methods on standard semi-supervised learning benchmark datasets and 18.9%$ against FixMatch on 13 diverse tasks. Furthermore, DST can be seamlessly adapted to other self-training methods and help stabilize their training and balance performance across classes in both cases of training from scratch and finetuning from pre-trained models.
Building pretrained language models is considered expensive and data-intensive, but must we increase dataset size to achieve better performance? We propose an alternative to larger training sets by automatically identifying smaller yet domain-representative subsets. We extend Cynical Data Selection, a statistical sentence scoring method that conditions on a representative target domain corpus. As an example, we treat the OntoNotes corpus as a target domain and pretrain a RoBERTa-like encoder from a cynically selected subset of the Pile. On both perplexity and across several downstream tasks in the target domain, it consistently outperforms random selection with 20x less data, 3x fewer training iterations, and 2x less estimated cloud compute cost, validating the recipe of automatic document selection for LM pretraining.
The design of man-made objects is dominated by computer aided design (CAD) tools. Assisting design with data-driven machine learning methods is hampered by lack of labeled data in CAD's native format; the parametric boundary representation (B-Rep). Several data sets of mechanical parts in B-Rep format have recently been released for machine learning research. However, large scale databases are largely unlabeled, and labeled datasets are small. Additionally, task specific label sets are rare, and costly to annotate. This work proposes to leverage unlabeled CAD geometry on supervised learning tasks. We learn a novel, hybrid implicit/explicit surface representation for B-Rep geometry, and show that this pre-training significantly improves few-shot learning performance and also achieves state-of-the-art performance on several existing B-Rep benchmarks.
While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on several popular benchmarks including CUB-200-2011, MIT Indoor-67, MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at //github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.
Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs.
This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.