As communications are increasingly taking place virtually, the ability to present well online is becoming an indispensable skill. Online speakers are facing unique challenges in engaging with remote audiences. However, there has been a lack of evidence-based analytical systems for people to comprehensively evaluate online speeches and further discover possibilities for improvement. This paper introduces SpeechMirror, a visual analytics system facilitating reflection on a speech based on insights from a collection of online speeches. The system estimates the impact of different speech techniques on effectiveness and applies them to a speech to give users awareness of the performance of speech techniques. A similarity recommendation approach based on speech factors or script content supports guided exploration to expand knowledge of presentation evidence and accelerate the discovery of speech delivery possibilities. SpeechMirror provides intuitive visualizations and interactions for users to understand speech factors. Among them, SpeechTwin, a novel multimodal visual summary of speech, supports rapid understanding of critical speech factors and comparison of different speech samples, and SpeechPlayer augments the speech video by integrating visualization of the speaker's body language with interaction, for focused analysis. The system utilizes visualizations suited to the distinct nature of different speech factors for user comprehension. The proposed system and visualization techniques were evaluated with domain experts and amateurs, demonstrating usability for users with low visualization literacy and its efficacy in assisting users to develop insights for potential improvement.
Spiking neural networks (SNNs) are recurrent models that can leverage sparsity in input time series to efficiently carry out tasks such as classification. Additional efficiency gains can be obtained if decisions are taken as early as possible as a function of the complexity of the input time series. The decision on when to stop inference and produce a decision must rely on an estimate of the current accuracy of the decision. Prior work demonstrated the use of conformal prediction (CP) as a principled way to quantify uncertainty and support adaptive-latency decisions in SNNs. In this paper, we propose to enhance the uncertainty quantification capabilities of SNNs by implementing ensemble models for the purpose of improving the reliability of stopping decisions. Intuitively, an ensemble of multiple models can decide when to stop more reliably by selecting times at which most models agree that the current accuracy level is sufficient. The proposed method relies on different forms of information pooling from ensemble models, and offers theoretical reliability guarantees. We specifically show that variational inference-based ensembles with p-variable pooling significantly reduce the average latency of state-of-the-art methods, while maintaining reliability guarantees.
Recommender systems have become an integral part of online platforms, providing personalized suggestions for purchasing items, consuming contents, and connecting with individuals. An online recommender system consists of two sides of components: the producer side comprises product sellers, content creators, or service providers, etc., and the consumer side includes buyers, viewers, or guests, etc. To optimize an online recommender system, A/B tests serve as the golden standard for comparing different ranking models and evaluating their impact on both the consumers and producers. While consumer-side experiments are relatively straightforward to design and commonly used to gauge the impact of ranking changes on the behavior of consumers (buyers, viewers, etc.), designing producer-side experiments presents a considerable challenge because producer items in the treatment and control groups need to be ranked by different models and then merged into a single ranking for the recommender to show to each consumer. In this paper, we review issues with the existing methods, propose new design principles for producer-side experiments, and develop a rigorous solution based on counterfactual interleaving designs for accurately measuring the effects of ranking changes on the producers (sellers, creators, etc.).
Long term exposure to biased content in literature or media can significantly influence people's perceptions of reality, leading to the development of implicit biases that are difficult to detect and address (Gerbner 1998). In this study, we propose a novel method to analyze the differences in representation between two groups and use it examine the representation of African Americans and White Americans in books between 1850 to 2000 with the Google Books dataset (Goldberg and Orwant 2013). By developing better tools to understand differences in representation, we aim to contribute to the ongoing efforts to recognize and mitigate biases. To improve upon the more common phrase based (men, women, white, black, etc) methods to differentiate context (Tripodi et al. 2019, Lucy; Tadimeti, and Bamman 2022), we propose collecting a comprehensive list of historically significant figures and using their names to select relevant context. This novel approach offers a more accurate and nuanced method for detecting implicit biases through reducing the risk of selection bias. We create group representations for each decade and analyze them in an aligned semantic space (Hamilton, Leskovec, and Jurafsky 2016). We further support our results by assessing the time adjusted toxicity (Bassignana, Basile, and Patti 2018) in the context for each group and identifying the semantic axes (Lucy, Tadimeti, and Bamman 2022) that exhibit the most significant differences between the groups across decades. We support our method by showing that our proposed method can capture known socio political changes accurately and our findings indicate that while the relative number of African American names mentioned in books have increased over time, the context surrounding them remains more toxic than white Americans.
In the context of IoT deployments, a multitude of devices concurrently require network access to transmit data over a shared communication channel. Employing symmetric strategies can effectively facilitate the collaborative use of the communication medium among these devices. By adopting such strategies, devices collectively optimize their transmission parameters, resulting in minimized collisions and enhanced overall network throughput. Our primary focus centers on the formulation of symmetric (i.e., identical) strategies for the sensors, aiming to optimize a finite horizon team objective. The imposition of symmetric strategies introduces novel facets and complexities into the team problem. To address this, we embrace the common information approach and adapt it to accommodate the use of symmetric strategies. This adaptation yields a dynamic programming framework grounded in common information, wherein each step entails the minimization of a single function mapping from an agent's private information space to the space of probability distributions over possible actions. Our proposed policy/method incurs a reduced cumulative cost compared to other methods employing symmetric strategies, a point substantiated by our simulation results.
With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.
Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps, and some works are dedicated to automatically select sticker response by matching text labels of stickers with previous utterances. However, due to their large quantities, it is impractical to require text labels for the all stickers. Hence, in this paper, we propose to recommend an appropriate sticker to user based on multi-turn dialog context history without any external labels. Two main challenges are confronted in this task. One is to learn semantic meaning of stickers without corresponding text labels. Another challenge is to jointly model the candidate sticker with the multi-turn dialog context. To tackle these challenges, we propose a sticker response selector (SRS) model. Specifically, SRS first employs a convolutional based sticker image encoder and a self-attention based multi-turn dialog encoder to obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct deep matching between the sticker with each utterance in the dialog history. SRS then learns the short-term and long-term dependency between all interaction results by a fusion network to output the the final matching score. To evaluate our proposed method, we collect a large-scale real-world dialog dataset with stickers from one of the most popular online chatting platform. Extensive experiments conducted on this dataset show that our model achieves the state-of-the-art performance for all commonly-used metrics. Experiments also verify the effectiveness of each component of SRS. To facilitate further research in sticker selection field, we release this dataset of 340K multi-turn dialog and sticker pairs.
User engagement is a critical metric for evaluating the quality of open-domain dialogue systems. Prior work has focused on conversation-level engagement by using heuristically constructed features such as the number of turns and the total time of the conversation. In this paper, we investigate the possibility and efficacy of estimating utterance-level engagement and define a novel metric, {\em predictive engagement}, for automatic evaluation of open-domain dialogue systems. Our experiments demonstrate that (1) human annotators have high agreement on assessing utterance-level engagement scores; (2) conversation-level engagement scores can be predicted from properly aggregated utterance-level engagement scores. Furthermore, we show that the utterance-level engagement scores can be learned from data. These scores can improve automatic evaluation metrics for open-domain dialogue systems, as shown by correlation with human judgements. This suggests that predictive engagement can be used as a real-time feedback for training better dialogue models.
In many real-world network datasets such as co-authorship, co-citation, email communication, etc., relationships are complex and go beyond pairwise. Hypergraphs provide a flexible and natural modeling tool to model such complex relationships. The obvious existence of such complex relationships in many real-world networks naturaly motivates the problem of learning with hypergraphs. A popular learning paradigm is hypergraph-based semi-supervised learning (SSL) where the goal is to assign labels to initially unlabeled vertices in a hypergraph. Motivated by the fact that a graph convolutional network (GCN) has been effective for graph-based SSL, we propose HyperGCN, a novel GCN for SSL on attributed hypergraphs. Additionally, we show how HyperGCN can be used as a learning-based approach for combinatorial optimisation on NP-hard hypergraph problems. We demonstrate HyperGCN's effectiveness through detailed experimentation on real-world hypergraphs.
Automatic image captioning has recently approached human-level performance due to the latest advances in computer vision and natural language understanding. However, most of the current models can only generate plain factual descriptions about the content of a given image. However, for human beings, image caption writing is quite flexible and diverse, where additional language dimensions, such as emotion, humor and language styles, are often incorporated to produce diverse, emotional, or appealing captions. In particular, we are interested in generating sentiment-conveying image descriptions, which has received little attention. The main challenge is how to effectively inject sentiments into the generated captions without altering the semantic matching between the visual content and the generated descriptions. In this work, we propose two different models, which employ different schemes for injecting sentiments into image captions. Compared with the few existing approaches, the proposed models are much simpler and yet more effective. The experimental results show that our model outperform the state-of-the-art models in generating sentimental (i.e., sentiment-bearing) image captions. In addition, we can also easily manipulate the model by assigning different sentiments to the testing image to generate captions with the corresponding sentiments.
Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.