亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Control charts for zero-inflated processes have attracted the interest of the researchers in the recent years. In this work we investigate the performance of Shewhart-type charts for zero-inflated Poisson and zero-inflated Binomial processes, in the case of estimated parameters. This is a case that usually occurs in practice, especially prior to starting the process monitoring. Using Monte Carlo simulation we evaluate charts' performance under an unconditional perspective and provide guidelines for their use in practice. We examine both the in-control and the out-of-control performance.

相關內容

Despite the growth of physically assistive robotics (PAR) research over the last decade, nearly half of PAR user studies do not involve participants with the target disabilities. There are several reasons for this -- recruitment challenges, small sample sizes, and transportation logistics -- all influenced by systemic barriers that people with disabilities face. However, it is well-established that working with end-users results in technology that better addresses their needs and integrates with their lived circumstances. In this paper, we reflect on multiple approaches we have taken to working with people with motor impairments across the design, development, and evaluation of three PAR projects: (a) assistive feeding with a robot arm; (b) assistive teleoperation with a mobile manipulator; and (c) shared control with a robot arm. We discuss these approaches to working with users along three dimensions -- individual- vs. community-level insight, logistic burden on end-users vs. researchers, and benefit to researchers vs. community -- and share recommendations for how other PAR researchers can incorporate users into their work.

Technological innovation plays a crucial role in driving economic growth and development. In this study, we investigate the extent to which technological innovation contributes to a more sustainable future and fosters entrepreneurship. To examine this, we focus on robotic process automation (RPA) highly relevant technology. We conducted a comprehensive analysis by examining the usage of RPA and its impact on environmental, social, and governance (ESG) factors. Our research involved gathering data from the 300 largest companies in terms of market capitalization. We assessed whether these companies used RPA and obtained their corresponding ESG ratings. To investigate the relationship between RPA and ESG, we employed a contingency table analysis, which involved categorizing the data based on ESG ratings. We further used Pearson's Chi-square Test of Independence to assess the impact of RPA on ESG. Our findings revealed a statistically significant association between RPA and ESG ratings, indicating their interconnection. The calculated value for Pearson's Chi-square Test of Independence was 6.54, with a corresponding p-value of 0.0381. This indicates that at a significance level of five percent, the RPA and ESG variables depend on each other. These results suggest that RPA, representative of modern technologies, likely influences the achievement of a sustainable future and the promotion of entrepreneurship. In conclusion, our study provides empirical evidence supporting the notion that technological innovations such as RPA have the potential to positively shape sustainability efforts and entrepreneurial endeavours.

Benchmarking is the de-facto standard for evaluating LLMs, due to its speed, replicability and low cost. However, recent work has pointed out that the majority of the open source benchmarks available today have been contaminated or leaked into LLMs, meaning that LLMs have access to test data during pretraining and/or fine-tuning. This raises serious concerns about the validity of benchmarking studies conducted so far and the future of evaluation using benchmarks. To solve this problem, we propose Private Benchmarking, a solution where test datasets are kept private and models are evaluated without revealing the test data to the model. We describe various scenarios (depending on the trust placed on model owners or dataset owners), and present solutions to avoid data contamination using private benchmarking. For scenarios where the model weights need to be kept private, we describe solutions from confidential computing and cryptography that can aid in private benchmarking. Finally, we present solutions the problem of benchmark dataset auditing, to ensure that private benchmarks are of sufficiently high quality.

In this work we present a novel task of understanding unintentional human activities in videos. We formalize this problem as a reasoning task under zero-shot scenario, where given a video of an unintentional activity we want to know why it transitioned from intentional to unintentional. We first evaluate the effectiveness of current state-of-the-art Large Multimodal Models on this reasoning task and observe that they suffer from hallucination. We further propose a novel prompting technique,termed as Dream of Thoughts (DoT), which allows the model to navigate through hallucinated thoughts to achieve better reasoning. To evaluate the performance on this task, we also introduce three different specialized metrics designed to quantify the models reasoning capability. We perform our experiments on two different datasets, OOPs and UCF-Crimes, and our findings show that DOT prompting technique is able to outperform standard prompting, while minimizing hallucinations.

Video games elicit emotions which can be influenced by color stimuli as shown by previous studies. However, little research has been conducted on whether this applies to mobile games played by adolescents. Therefore, we examined the influence of color stimuli hue and saturation on mobile game play. Adolescents (n=21) played a mobile platformer game with varying hue and saturation per level for about 25 minutes. We gathered data on emotional states after each level using the Self-Assessment Manikin questionnaire, recorded time spent in each level, and collected participant self-reports on their video game experience. We performed statistical tests, such as ANOVA, which depict no significant influence of hue and/or saturation on the emotional state of our players. We conclude that it is possible that color alone is not an effective measure for eliciting emotion in mobile games, and further research is needed to consider measures such as time spent in the game and screen size, as these are unique to mobile games. There was a noticeable variance in emotional response between male and female players, with a significant interaction of hue and saturation among male players for valence ratings. This may be an indication that color preference influences perceived pleasantness.

As research and deployment of AI grows, the computational burden to support and sustain its progress inevitably does too. To train or fine-tune state-of-the-art models in NLP, computer vision, etc., some form of AI hardware acceleration is virtually a requirement. Recent large language models require considerable resources to train and deploy, resulting in significant energy usage, potential carbon emissions, and massive demand for GPUs and other hardware accelerators. However, this surge carries large implications for energy sustainability at the HPC/datacenter level. In this paper, we study the aggregate effect of power-capping GPUs on GPU temperature and power draw at a research supercomputing center. With the right amount of power-capping, we show significant decreases in both temperature and power draw, reducing power consumption and potentially improving hardware life-span with minimal impact on job performance. While power-capping reduces power draw by design, the aggregate system-wide effect on overall energy consumption is less clear; for instance, if users notice job performance degradation from GPU power-caps, they may request additional GPU-jobs to compensate, negating any energy savings or even worsening energy consumption. To our knowledge, our work is the first to conduct and make available a detailed analysis of the effects of GPU power-capping at the supercomputing scale. We hope our work will inspire HPCs/datacenters to further explore, evaluate, and communicate the impact of power-capping AI hardware accelerators for more sustainable AI.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

To quickly obtain new labeled data, we can choose crowdsourcing as an alternative way at lower cost in a short time. But as an exchange, crowd annotations from non-experts may be of lower quality than those from experts. In this paper, we propose an approach to performing crowd annotation learning for Chinese Named Entity Recognition (NER) to make full use of the noisy sequence labels from multiple annotators. Inspired by adversarial learning, our approach uses a common Bi-LSTM and a private Bi-LSTM for representing annotator-generic and -specific information. The annotator-generic information is the common knowledge for entities easily mastered by the crowd. Finally, we build our Chinese NE tagger based on the LSTM-CRF model. In our experiments, we create two data sets for Chinese NER tasks from two domains. The experimental results show that our system achieves better scores than strong baseline systems.

北京阿比特科技有限公司