Traditional unlearnable strategies have been proposed to prevent unauthorized users from training on the 2D image data. With more 3D point cloud data containing sensitivity information, unauthorized usage of this new type data has also become a serious concern. To address this, we propose the first integral unlearnable framework for 3D point clouds including two processes: (i) we propose an unlearnable data protection scheme, involving a class-wise setting established by a category-adaptive allocation strategy and multi-transformations assigned to samples; (ii) we propose a data restoration scheme that utilizes class-wise inverse matrix transformation, thus enabling authorized-only training for unlearnable data. This restoration process is a practical issue overlooked in most existing unlearnable literature, \ie, even authorized users struggle to gain knowledge from 3D unlearnable data. Both theoretical and empirical results (including 6 datasets, 16 models, and 2 tasks) demonstrate the effectiveness of our proposed unlearnable framework. Our code is available at \url{//github.com/CGCL-codes/UnlearnablePC}
This scoping review examines the current body of knowledge at the intersection of Generative Artificial Intelligence (GenAI) and Self-Directed Learning (SDL). By synthesising the findings from 18 studies published from 2020 to 2024 and following the PRISMA-SCR guidelines for scoping reviews, we developed four key themes. This includes GenAI as a Potential Enhancement for SDL, The Educator as a GenAI Guide, Personalisation of Learning, and Approaching with Caution. Our findings suggest that GenAI tools, including ChatGPT and other Large Language Models (LLMs) show promise in potentially supporting SDL through on-demand, personalised assistance. At the same time, the literature emphasises that educators are as important and central to the learning process as ever before, although their role may continue to shift as technologies develop. Our review reveals that there are still significant gaps in understanding the long-term impacts of GenAI on SDL outcomes, and there is a further need for longitudinal empirical studies that explore not only text-based chatbots but also emerging multimodal applications.
Transformer-based models have achieved remarkable success in various Natural Language Processing (NLP) tasks, yet their ability to handle long documents is constrained by computational limitations. Traditional approaches, such as truncating inputs, sparse self-attention, and chunking, attempt to mitigate these issues, but they often lead to information loss and hinder the model's ability to capture long-range dependencies. In this paper, we introduce ChuLo, a novel chunk representation method for long document classification that addresses these limitations. Our ChuLo groups input tokens using unsupervised keyphrase extraction, emphasizing semantically important keyphrase based chunk to retain core document content while reducing input length. This approach minimizes information loss and improves the efficiency of Transformer-based models. Preserving all tokens in long document understanding, especially token classification tasks, is especially important to ensure that fine-grained annotations, which depend on the entire sequence context, are not lost. We evaluate our method on multiple long document classification tasks and long document token classification tasks, demonstrating its effectiveness through comprehensive qualitative and quantitative analyses.
Learning-based image compression methods have improved in recent years and started to outperform traditional codecs. However, neural-network approaches can unexpectedly introduce visual artifacts in some images. We therefore propose methods to separately detect three types of artifacts (texture and boundary degradation, color change, and text corruption), to localize the affected regions, and to quantify the artifact strength. We consider only those regions that exhibit distortion due solely to the neural compression but that a traditional codec recovers successfully at a comparable bitrate. We employed our methods to collect artifacts for the JPEG AI verification model with respect to HM-18.0, the H.265 reference software. We processed about 350,000 unique images from the Open Images dataset using different compression-quality parameters; the result is a dataset of 46,440 artifacts validated through crowd-sourced subjective assessment. Our proposed dataset and methods are valuable for testing neural-network-based image codecs, identifying bugs in these codecs, and enhancing their performance. We make source code of the methods and the dataset publicly available.
Generative AI has made remarkable strides to revolutionize fields such as image and video generation. These advancements are driven by innovative algorithms, architecture, and data. However, the rapid proliferation of generative models has highlighted a critical gap: the absence of trustworthy evaluation metrics. Current automatic assessments such as FID, CLIP, FVD, etc often fail to capture the nuanced quality and user satisfaction associated with generative outputs. This paper proposes an open platform GenAI-Arena to evaluate different image and video generative models, where users can actively participate in evaluating these models. By leveraging collective user feedback and votes, GenAI-Arena aims to provide a more democratic and accurate measure of model performance. It covers three tasks of text-to-image generation, text-to-video generation, and image editing respectively. Currently, we cover a total of 35 open-source generative models. GenAI-Arena has been operating for seven months, amassing over 9000 votes from the community. We describe our platform, analyze the data, and explain the statistical methods for ranking the models. To further promote the research in building model-based evaluation metrics, we release a cleaned version of our preference data for the three tasks, namely GenAI-Bench. We prompt the existing multi-modal models like Gemini, and GPT-4o to mimic human voting. We compute the accuracy by comparing the model voting with the human voting to understand their judging abilities. Our results show existing multimodal models are still lagging in assessing the generated visual content, even the best model GPT-4o only achieves an average accuracy of 49.19 across the three generative tasks. Open-source MLLMs perform even worse due to the lack of instruction-following and reasoning ability in complex vision scenarios.
The growth of digital documents presents significant challenges in efficient management and knowledge extraction. Traditional methods often struggle with complex documents, leading to issues such as hallucinations and high latency in responses from Large Language Models (LLMs). ZeroG, an innovative approach, significantly mitigates these challenges by leveraging knowledge distillation and prompt tuning to enhance model performance. ZeroG utilizes a smaller model that replicates the behavior of a larger teacher model, ensuring contextually relevant and grounded responses, by employing a black-box distillation approach, it creates a distilled dataset without relying on intermediate features, optimizing computational efficiency. This method significantly enhances accuracy and reduces response times, providing a balanced solution for modern document management. Incorporating advanced techniques for document ingestion and metadata utilization, ZeroG improves the accuracy of question-and-answer systems. The integration of graph databases and robust metadata management further streamlines information retrieval, allowing for precise and context-aware responses. By transforming how organizations interact with complex data, ZeroG enhances productivity and user experience, offering a scalable solution for the growing demands of digital document management.
Data plays a fundamental role in the training of Large Language Models (LLMs). Effective data management, particularly in the formulation of a well-suited training dataset, holds significance for enhancing model performance and improving training efficiency during pretraining and supervised fine-tuning phases. Despite the considerable importance of data management, the current research community still falls short in providing a systematic analysis of the rationale behind management strategy selection, its consequential effects, methodologies for evaluating curated datasets, and the ongoing pursuit of improved strategies. Consequently, the exploration of data management has attracted more and more attention among the research community. This survey provides a comprehensive overview of current research in data management within both the pretraining and supervised fine-tuning stages of LLMs, covering various noteworthy aspects of data management strategy design: data quantity, data quality, domain/task composition, etc. Looking toward the future, we extrapolate existing challenges and outline promising directions for development in this field. Therefore, this survey serves as a guiding resource for practitioners aspiring to construct powerful LLMs through effective data management practices. The collection of the latest papers is available at //github.com/ZigeW/data_management_LLM.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.
Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.
Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.
The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.