Language models (LMs) are known to suffer from forgetting of previously learned examples when fine-tuned, breaking stability of deployed LM systems. Despite efforts on mitigating forgetting, few have investigated whether, and how forgotten upstream examples are associated with newly learned tasks. Insights on such associations enable efficient and targeted mitigation of forgetting. In this paper, we empirically analyze forgetting that occurs in $N$ upstream examples while the model learns $M$ new tasks and visualize their associations with a $M \times N$ matrix. We empirically demonstrate that the degree of forgetting can often be approximated by simple multiplicative contributions of the upstream examples and newly learned tasks. We also reveal more complicated patterns where specific subsets of examples are forgotten with statistics and visualization. Following our analysis, we predict forgetting that happens on upstream examples when learning a new task with matrix completion over the empirical associations, outperforming prior approaches that rely on trainable LMs. Project website: //inklab.usc.edu/lm-forgetting-prediction/
Diffusion models, known for their tremendous ability to generate novel and high-quality samples, have recently raised concerns due to their data memorization behavior, which poses privacy risks. Recent approaches for memory mitigation either only focused on the text modality problem in cross-modal generation tasks or utilized data augmentation strategies. In this paper, we propose a novel training framework for diffusion models from the perspective of visual modality, which is more generic and fundamental for mitigating memorization. To facilitate forgetting of stored information in diffusion model parameters, we propose an iterative ensemble training strategy by splitting the data into multiple shards for training multiple models and intermittently aggregating these model parameters. Moreover, practical analysis of losses illustrates that the training loss for easily memorable images tends to be obviously lower. Thus, we propose an anti-gradient control method to exclude the sample with a lower loss value from the current mini-batch to avoid memorizing. Extensive experiments and analysis on four datasets are conducted to illustrate the effectiveness of our method, and results show that our method successfully reduces memory capacity while even improving the performance slightly. Moreover, to save the computing cost, we successfully apply our method to fine-tune the well-trained diffusion models by limited epochs, demonstrating the applicability of our method. Code is available in //github.com/liuxiao-guan/IET_AGC.
Despite large language models (LLMs) have demonstrated impressive performance in various tasks, they are still suffering from the factual inconsistency problem called hallucinations. For instance, LLMs occasionally generate content that diverges from source article, and prefer to extract information that appears at the beginning and end of the context, especially in long document summarization. Inspired by these findings, we propose to improve the faithfulness of LLMs in summarization by impelling them to process the entire article more fairly and faithfully. We present a novel summary generation strategy, namely SliSum, which exploits the ideas of sliding windows and self-consistency. Specifically, SliSum divides the source article into overlapping windows, and utilizes LLM to generate local summaries for the content in the windows. Finally, SliSum aggregates all local summaries using clustering and majority voting algorithm to produce more faithful summary of entire article. Extensive experiments demonstrate that SliSum significantly improves the faithfulness of diverse LLMs including LLaMA-2, Claude-2 and GPT-3.5 in both short and long text summarization, while maintaining their fluency and informativeness and without additional fine-tuning and resources. We further conduct qualitative and quantitative studies to investigate why SliSum works and impacts of hyperparameters in SliSum on performance.
Foundation models are trained on a large amount of data to learn generic patterns. Consequently, these models can be used and fine-tuned for various purposes. Naturally, studying such models' use in the context of digital twins for cyber-physical systems (CPSs) is a relevant area of investigation. To this end, we provide perspectives on various aspects within the context of developing digital twins for CPSs, where foundation models can be used to increase the efficiency of creating digital twins, improve the effectiveness of the capabilities they provide, and used as specialized fine-tuned foundation models acting as digital twins themselves. We also discuss challenges in using foundation models in a more generic context. We use the case of an autonomous driving system as a representative CPS to give examples. Finally, we provide discussions and open research directions that we believe are valuable for the digital twin community.
Language model (LM) distillation is a trending area that aims to distil the knowledge residing in a large teacher LM to a small student one. While various methods have been proposed to maximize the effectiveness of the distillation, significant challenges persist, particularly when there is a substantial capacity gap between the teacher and student LMs. This issue, often referred to as the \textit{curse} of capacity gap, suggests that a larger teacher does not necessarily result in a superior student compared to one distilled from a smaller teacher. In other words, there is likely an optimal teacher yielding the best student along the scaling course of the teacher. However, the curse of capacity gap can not be tackled without notable compute overhead, as indicated in previous studies. In the context of large LMs (LLMs), previously viable approaches become much less meaningful, as it is an impossible triangle to distill an expected student from an optimal teacher student with small compute overhead. Fortunately, the impossible triangle can fortunately be possible provided an inducted \textit{law} of capacity gap. In this paper, we take the spirits of scaling law and reveal that the optimal teacher scale almost consistently follows a linear scaling with the student scale across different model architectures and data scales. The law later guides us to distil a 3B student LM (termed \textsc{MiniMA}) from LLaMA2-7B. \textsc{MiniMA} is demonstrated to outperform a wide range of 3B competitors and could even compete with several 7B models.
Predictive models may generate biased predictions when classifying imbalanced datasets. This happens when the model favors the majority class, leading to low performance in accurately predicting the minority class. To address this issue, balancing or resampling methods are critical data-centric AI approaches in the modeling process to improve prediction performance. However, there have been debates and questions about the functionality of these methods in recent years. In particular, many candidate models may exhibit very similar predictive performance, called the Rashomon effect, in model selection, and they may even produce different predictions for the same observations. Selecting one of these models without considering the predictive multiplicity -- which is the case of yielding conflicting models' predictions for any sample -- can result in blind selection. In this paper, the impact of balancing methods on predictive multiplicity is examined using the Rashomon effect. It is crucial because the blind model selection in data-centric AI is risky from a set of approximately equally accurate models. This may lead to severe problems in model selection, validation, and explanation. To tackle this matter, we conducted real dataset experiments to observe the impact of balancing methods on predictive multiplicity through the Rashomon effect by using a newly proposed metric obscurity in addition to the existing ones: ambiguity and discrepancy. Our findings showed that balancing methods inflate the predictive multiplicity and yield varying results. To monitor the trade-off between the prediction performance and predictive multiplicity for conducting the modeling process responsibly, we proposed using the extended version of the performance-gain plot when balancing the training data.
Foundation models (FMs) are large neural networks trained on broad datasets, excelling in downstream tasks with minimal fine-tuning. Human activity recognition in video has advanced with FMs, driven by competition among different architectures. However, high accuracies on standard benchmarks can draw an artificially rosy picture, as they often overlook real-world factors like changing camera perspectives. Popular benchmarks, mostly from YouTube or movies, offer diverse views but only coarse actions, which are insufficient for use-cases needing fine-grained, domain-specific actions. Domain-specific datasets (e.g., for industrial assembly) typically use data from limited static perspectives. This paper empirically evaluates how perspective changes affect different FMs in fine-grained human activity recognition. We compare multiple backbone architectures and design choices, including image- and video- based models, and various strategies for temporal information fusion, including commonly used score averaging and more novel attention-based temporal aggregation mechanisms. This is the first systematic study of different foundation models and specific design choices for human activity recognition from unknown views, conducted with the goal to provide guidance for backbone- and temporal- fusion scheme selection. Code and models will be made publicly available to the community.
The Cox Proportional Hazards (CPH) model has long been the preferred survival model for its explainability. However, to increase its predictive power beyond its linear log-risk, it was extended to utilize deep neural networks sacrificing its explainability. In this work, we explore the potential of self-explaining neural networks (SENN) for survival analysis. we propose a new locally explainable Cox proportional hazards model, named CoxSE, by estimating a locally-linear log-hazard function using the SENN. We also propose a modification to the Neural additive (NAM) models hybrid with SENN, named CoxSENAM, which enables the control of the stability and consistency of the generated explanations. Several experiments using synthetic and real datasets have been performed comparing with a NAM-based model, DeepSurv model explained with SHAP, and a linear CPH model. The results show that, unlike the NAM-based model, the SENN-based model can provide more stable and consistent explanations while maintaining the same expressiveness power of the black-box model. The results also show that, due to their structural design, NAM-based models demonstrated better robustness to non-informative features. Among these models, the hybrid model exhibited the best robustness.
Connectionist temporal classification (CTC) models are known to have peaky output distributions. Such behavior is not a problem for automatic speech recognition (ASR), but it can cause inaccurate forced alignments (FA), especially at finer granularity, e.g., phoneme level. This paper aims at alleviating the peaky behavior for CTC and improve its suitability for forced alignment generation, by leveraging label priors, so that the scores of alignment paths containing fewer blanks are boosted and maximized during training. As a result, our CTC model produces less peaky posteriors and is able to more accurately predict the offset of the tokens besides their onset. It outperforms the standard CTC model and a heuristics-based approach for obtaining CTC's token offset timestamps by 12-40% in phoneme and word boundary errors (PBE and WBE) measured on the Buckeye and TIMIT data. Compared with the most widely used FA toolkit Montreal Forced Aligner (MFA), our method performs similarly on PBE/WBE on Buckeye, yet falls behind MFA on TIMIT. Nevertheless, our method has a much simpler training pipeline and better runtime efficiency. Our training recipe and pretrained model are released in TorchAudio.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.