亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Knowledge distillation (KD) has demonstrated remarkable success across various domains, but its application to medical imaging tasks, such as kidney and liver tumor segmentation, has encountered challenges. Many existing KD methods are not specifically tailored for these tasks. Moreover, prevalent KD methods often lack a careful consideration of `what' and `from where' to distill knowledge from the teacher to the student. This oversight may lead to issues like the accumulation of training bias within shallower student layers, potentially compromising the effectiveness of KD. To address these challenges, we propose Hierarchical Layer-selective Feedback Distillation (HLFD). HLFD strategically distills knowledge from a combination of middle layers to earlier layers and transfers final layer knowledge to intermediate layers at both the feature and pixel levels. This design allows the model to learn higher-quality representations from earlier layers, resulting in a robust and compact student model. Extensive quantitative evaluations reveal that HLFD outperforms existing methods by a significant margin. For example, in the kidney segmentation task, HLFD surpasses the student model (without KD) by over 10\%, significantly improving its focus on tumor-specific features. From a qualitative standpoint, the student model trained using HLFD excels at suppressing irrelevant information and can focus sharply on tumor-specific details, which opens a new pathway for more efficient and accurate diagnostic tools. Code is available \href{//github.com/vangorade/RethinkingKD_ISBI24}{here}.

相關內容

The adaptation of Large Language Model (LLM)-based agents to execute tasks via natural language prompts represents a significant advancement, notably eliminating the need for explicit retraining or fine tuning, but are constrained by the comprehensiveness and diversity of the provided examples, leading to outputs that often diverge significantly from expected results, especially when it comes to the open-ended questions. This paper introduces the Memory Sharing, a framework which integrates the real-time memory filter, storage and retrieval to enhance the In-Context Learning process. This framework allows for the sharing of memories among multiple agents, whereby the interactions and shared memories between different agents effectively enhance the diversity of the memories. The collective self-enhancement through interactive learning among multiple agents facilitates the evolution from individual intelligence to collective intelligence. Besides, the dynamically growing memory pool is utilized not only to improve the quality of responses but also to train and enhance the retriever. We evaluated our framework across three distinct domains involving specialized tasks of agents. The experimental results demonstrate that the MS framework significantly improves the agents' performance in addressing open-ended questions.

The lack of trust in algorithms is usually an issue when using Reinforcement Learning (RL) agents for control in real-world domains such as production plants, autonomous vehicles, or traffic-related infrastructure, partly due to the lack of verifiability of the model itself. In such scenarios, Petri nets (PNs) are often available for flowcharts or process steps, as they are versatile and standardized. In order to facilitate integration of RL models and as a step towards increasing AI trustworthiness, we propose an approach that uses PNs with three main advantages over typical RL approaches: Firstly, the agent can now easily be modeled with a combined state including both external environmental observations and agent-specific state information from a given PN. Secondly, we can enforce constraints for state-dependent actions through the inherent PN model. And lastly, we can increase trustworthiness by verifying PN properties through techniques such as model checking. We test our approach on a typical four-way intersection traffic light control setting and present our results, beating cycle-based baselines.

By deploying antenna arrays at the transmitter/receiver to provide additional spatial-domain degrees of freedom (DoFs), multi-antenna technology greatly improves the reliability and efficiency of wireless communication. Meanwhile, the application of multi-antenna technology in the radar field has achieved spatial angle resolution and improved sensing DoF, thus significantly enhancing wireless sensing performance. However, wireless communication and radar sensing have undergone independent development over the past few decades. As a result, although multi-antenna technology has dramatically advanced in these two fields separately, it has not been deeply integrated by exploiting their synergy. A new opportunity to fill up this gap arises as the integration of sensing and communication has been identified as one of the typical usage scenarios of the 6G communication network. Motivated by the above, this article aims to explore the multi-antenna technology for 6G ISAC, with the focus on its future development trends such as continuous expansion of antenna array scale, more diverse array architectures, and more flexible antenna designs. First, we introduce several new and promising antenna architectures, including the centralized antenna architectures based on traditional compact arrays or emerging sparse arrays, the distributed antenna architectures exemplified by the cell-free massive MIMO, and the movable/fluid antennas with flexible positions and/or orientations in a given 3D space. Next, for each antenna architecture mentioned above, we present the corresponding far-field/near-field channel models and analyze the communication and sensing performance. Finally, we summarize the characteristics of different antenna architectures and look forward to new ideas for solving the difficulties in acquiring CSI caused by the continuous expansion of antenna array scale and flexible antenna designs.

In recent advancements in Multi-agent Reinforcement Learning (MARL), its application has extended to various safety-critical scenarios. However, most methods focus on online learning, which presents substantial risks when deployed in real-world settings. Addressing this challenge, we introduce an innovative framework integrating diffusion models within the MARL paradigm. This approach notably enhances the safety of actions taken by multiple agents through risk mitigation while modeling coordinated action. Our framework is grounded in the Centralized Training with Decentralized Execution (CTDE) architecture, augmented by a Diffusion Model for prediction trajectory generation. Additionally, we incorporate a specialized algorithm to further ensure operational safety. We evaluate our model against baselines on the DSRL benchmark. Experiment results demonstrate that our model not only adheres to stringent safety constraints but also achieves superior performance compared to existing methodologies. This underscores the potential of our approach in advancing the safety and efficacy of MARL in real-world applications.

The integration of Artificial Intelligence (AI) into automation systems has the potential to enhance efficiency and to address currently unsolved existing technical challenges. However, the industry-wide adoption of AI is hindered by the lack of standardized documentation for the complex compositions of automation systems, AI software, production hardware, and their interdependencies. This paper proposes a formal model using standards and ontologies to provide clear and structured documentation of AI applications in automation systems. The proposed information model for artificial intelligence in automation systems (AIAS) utilizes ontology design patterns to map and link various aspects of automation systems and AI software. Validated through a practical example, the model demonstrates its effectiveness in improving documentation practices and aiding the sustainable implementation of AI in industrial settings.

The increasing interest in developing Artificial Intelligence applications in the medical domain, suffers from the lack of high-quality dataset, mainly due to privacy-related issues. Moreover, the recent rising of Multimodal Large Language Models (MLLM) leads to a need for multimodal medical datasets, where clinical reports and findings are attached to the corresponding CT or MR scans. This paper illustrates the entire workflow for building the data set MedPix 2.0. Starting from the well-known multimodal dataset MedPix\textsuperscript{\textregistered}, mainly used by physicians, nurses and healthcare students for Continuing Medical Education purposes, a semi-automatic pipeline was developed to extract visual and textual data followed by a manual curing procedure where noisy samples were removed, thus creating a MongoDB database. Along with the dataset, we developed a GUI aimed at navigating efficiently the MongoDB instance, and obtaining the raw data that can be easily used for training and/or fine-tuning MLLMs. To enforce this point, we also propose a CLIP-based model trained on MedPix 2.0 for scan classification tasks.

Over the past decade, domain adaptation has become a widely studied branch of transfer learning that aims to improve performance on target domains by leveraging knowledge from the source domain. Conventional domain adaptation methods often assume access to both source and target domain data simultaneously, which may not be feasible in real-world scenarios due to privacy and confidentiality concerns. As a result, the research of Source-Free Domain Adaptation (SFDA) has drawn growing attention in recent years, which only utilizes the source-trained model and unlabeled target data to adapt to the target domain. Despite the rapid explosion of SFDA work, yet there has no timely and comprehensive survey in the field. To fill this gap, we provide a comprehensive survey of recent advances in SFDA and organize them into a unified categorization scheme based on the framework of transfer learning. Instead of presenting each approach independently, we modularize several components of each method to more clearly illustrate their relationships and mechanics in light of the composite properties of each method. Furthermore, we compare the results of more than 30 representative SFDA methods on three popular classification benchmarks, namely Office-31, Office-home, and VisDA, to explore the effectiveness of various technical routes and the combination effects among them. Additionally, we briefly introduce the applications of SFDA and related fields. Drawing from our analysis of the challenges facing SFDA, we offer some insights into future research directions and potential settings.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

There is a resurgent interest in developing intelligent open-domain dialog systems due to the availability of large amounts of conversational data and the recent progress on neural approaches to conversational AI. Unlike traditional task-oriented bots, an open-domain dialog system aims to establish long-term connections with users by satisfying the human need for communication, affection, and social belonging. This paper reviews the recent works on neural approaches that are devoted to addressing three challenges in developing such systems: semantics, consistency, and interactiveness. Semantics requires a dialog system to not only understand the content of the dialog but also identify user's social needs during the conversation. Consistency requires the system to demonstrate a consistent personality to win users trust and gain their long-term confidence. Interactiveness refers to the system's ability to generate interpersonal responses to achieve particular social goals such as entertainment, conforming, and task completion. The works we select to present here is based on our unique views and are by no means complete. Nevertheless, we hope that the discussion will inspire new research in developing more intelligent dialog systems.

北京阿比特科技有限公司