This paper introduces RAISE (Reasoning and Acting through Scratchpad and Examples), an advanced architecture enhancing the integration of Large Language Models (LLMs) like GPT-4 into conversational agents. RAISE, an enhancement of the ReAct framework, incorporates a dual-component memory system, mirroring human short-term and long-term memory, to maintain context and continuity in conversations. It entails a comprehensive agent construction scenario, including phases like Conversation Selection, Scene Extraction, CoT Completion, and Scene Augmentation, leading to the LLMs Training phase. This approach appears to enhance agent controllability and adaptability in complex, multi-turn dialogues. Our preliminary evaluations in a real estate sales context suggest that RAISE has some advantages over traditional agents, indicating its potential for broader applications. This work contributes to the AI field by providing a robust framework for developing more context-aware and versatile conversational agents.
We propose DINOBot, a novel imitation learning framework for robot manipulation, which leverages the image-level and pixel-level capabilities of features extracted from Vision Transformers trained with DINO. When interacting with a novel object, DINOBot first uses these features to retrieve the most visually similar object experienced during human demonstrations, and then uses this object to align its end-effector with the novel object to enable effective interaction. Through a series of real-world experiments on everyday tasks, we show that exploiting both the image-level and pixel-level properties of vision foundation models enables unprecedented learning efficiency and generalisation. Videos and code are available at //www.robot-learning.uk/dinobot.
This paper introduces INTERVENOR (INTERactiVE chaiN Of Repair), a system designed to emulate the interactive code repair processes observed in humans, encompassing both code diagnosis and code repair. INTERVENOR prompts Large Language Models (LLMs) to play distinct roles during the code repair process, functioning as both a Code Learner and a Code Teacher. Specifically, the Code Learner is tasked with adhering to instructions to generate or repair code, while the Code Teacher is responsible for crafting a Chain-of-Repair (CoR) to serve as guidance for the Code Learner. During generating the CoR, the Code Learner needs to check the generated codes from Code Learner and reassess how to address code bugs based on error feedback received from compilers. Experimental results demonstrate that INTERVENOR surpasses baseline models, exhibiting improvements of approximately 18% and 4.3% over GPT-3.5 in code generation and code translation tasks, respectively. Our further analyses show that CoR is effective to illuminate the reasons behind bugs and outline solution plans in natural language. With the feedback of code compilers, INTERVENOR can accurately identify syntax errors and assertion errors and provide precise instructions to repair codes. All data and codes are available at //github.com/NEUIR/INTERVENOR
This paper studies a communication-centric integrated sensing and communication (ISAC) system, where a multi-antenna base station (BS) simultaneously performs downlink communication and target detection. A novel target detection and information transmission protocol is proposed, where the BS executes the channel estimation and beamforming successively and meanwhile jointly exploits the pilot sequences in the channel estimation stage and user information in the transmission stage to assist target detection. We investigate the joint design of pilot matrix, training duration, and transmit beamforming to maximize the probability of target detection, subject to the minimum achievable rate required by the user. However, designing the optimal pilot matrix is rather challenging since there is no closed-form expression of the detection probability with respect to the pilot matrix. To tackle this difficulty, we resort to designing the pilot matrix based on the information-theoretic criterion to maximize the mutual information (MI) between the received observations and BS-target channel coefficients for target detection. We first derive the optimal pilot matrix for both channel estimation and target detection, and then propose an unified pilot matrix structure to balance minimizing the channel estimation error (MSE) and maximizing MI. Based on the proposed structure, a low-complexity successive refinement algorithm is proposed. Simulation results demonstrate that the proposed pilot matrix structure can well balance the MSE-MI and the Rate-MI tradeoffs, and show the significant region improvement of our proposed design as compared to other benchmark schemes. Furthermore, it is unveiled that as the communication channel is more correlated, the Rate-MI region can be further enlarged.
We introduce a novel Information Criterion (IC), termed Learning under Singularity (LS), designed to enhance the functionality of the Widely Applicable Bayes Information Criterion (WBIC) and the Singular Bayesian Information Criterion (sBIC). LS is effective without regularity constraints and demonstrates stability. Watanabe defined a statistical model or a learning machine as regular if the mapping from a parameter to a probability distribution is one-to-one and its Fisher information matrix is positive definite. In contrast, models not meeting these conditions are termed singular. Over the past decade, several information criteria for singular cases have been proposed, including WBIC and sBIC. WBIC is applicable in non-regular scenarios but faces challenges with large sample sizes and redundant estimation of known learning coefficients. Conversely, sBIC is limited in its broader application due to its dependence on maximum likelihood estimates. LS addresses these limitations by enhancing the utility of both WBIC and sBIC. It incorporates the empirical loss from the Widely Applicable Information Criterion (WAIC) to represent the goodness of fit to the statistical model, along with a penalty term similar to that of sBIC. This approach offers a flexible and robust method for model selection, free from regularity constraints.
This paper studies the theoretical framework of the alignment process of generative models with Reinforcement Learning from Human Feedback (RLHF). We consider a standard mathematical formulation, the reverse-KL regularized contextual bandit for RLHF. Despite its widespread practical application, a rigorous theoretical analysis of this formulation remains open. We investigate its behavior in three distinct settings -- offline, online, and hybrid -- and propose efficient algorithms with finite-sample theoretical guarantees. Moving towards practical applications, our framework, with a robust approximation of the information-theoretical policy improvement oracle, naturally gives rise to several novel RLHF algorithms. This includes an iterative version of the Direct Preference Optimization (DPO) algorithm for online settings, and a multi-step rejection sampling strategy for offline scenarios. Our empirical evaluations on real-world alignment experiment of large language model demonstrate that these proposed methods significantly surpass existing strong baselines, such as DPO and Rejection Sampling Optimization (RSO), showcasing the connections between solid theoretical foundations and their powerful practical implementations.
We analyze the behaviors of open large language models (LLMs) on the task of data-to-text (D2T) generation, i.e., generating coherent and relevant text from structured data. To avoid the issue of LLM training data contamination with standard benchmarks, we design Quintd - a tool for collecting novel structured data records from public APIs. Using a dataset collected with Quintd and leveraging reference-free evaluation, we analyze model behaviors on five D2T generation tasks. We find that recent open LLMs (Llama2, Mistral, and Zephyr) can generate fluent and coherent text from standard data formats in zero-shot settings. However, we also show that the semantic accuracy of the outputs is a major issue: both according to our GPT-4-based metric and human annotators, more than 80% of the outputs of open LLMs contain a semantic error. We publicly release the code, data, and model outputs.
This paper introduces the zk-IoT framework, a novel approach to enhancing the security of Internet of Things (IoT) ecosystems through the use of Zero-Knowledge Proofs (ZKPs) on blockchain platforms. Our framework ensures the integrity of firmware execution and data processing in potentially compromised IoT devices. By leveraging the concept of ZKP, we establish a trust layer that facilitates secure, autonomous communication between IoT devices in environments where devices may not inherently trust each other. The framework includes zk-Devices, which utilize functional commitment to generate proofs for executed programs, and service contracts for encoding interaction logic among devices. It also utilizes a blockchain layer and a relayer as a ZKP storage and data communication protocol, respectively. Our experiments demonstrate that proof generation, reading, and verification take approximately 694, 5078, and 19 milliseconds in our system setup, respectively. These timings meet the practical requirements for IoT device communication, demonstrating the feasibility and efficiency of our solution. The zk-IoT framework represents a significant advancement in the realm of IoT security, paving the way for reliable and scalable IoT networks across various applications, such as smart city infrastructures, healthcare systems, and industrial automation.
We introduce and test the System Dynamics Bot, a computer program leveraging a large language model to automate the creation of causal loop diagrams from textual data. To evaluate its performance, we ensembled two distinct databases. The first dataset includes 20 causal loop diagrams and associated texts sourced from the system dynamics literature. The second dataset comprises responses from 30 participants to a vignette, along with causal loop diagrams coded by three system dynamics modelers. The bot uses textual data and successfully identifies approximately sixty percent of the links between variables and feedback loops in both datasets. This paper outlines our approach, provides examples, and presents evaluation results. We discuss encountered challenges and implemented solutions in developing the System Dynamics Bot. The bot can facilitate extracting mental models from textual data and improve model building processes. Moreover, the two datasets can serve as a testbed for similar programs.
We introduce Graph-Induced Sum-Product Networks (GSPNs), a new probabilistic framework for graph representation learning that can tractably answer probabilistic queries. Inspired by the computational trees induced by vertices in the context of message-passing neural networks, we build hierarchies of sum-product networks (SPNs) where the parameters of a parent SPN are learnable transformations of the a-posterior mixing probabilities of its children's sum units. Due to weight sharing and the tree-shaped computation graphs of GSPNs, we obtain the efficiency and efficacy of deep graph networks with the additional advantages of a probabilistic model. We show the model's competitiveness on scarce supervision scenarios, under missing data, and for graph classification in comparison to popular neural models. We complement the experiments with qualitative analyses on hyper-parameters and the model's ability to answer probabilistic queries.
Aiming at expanding few-shot relations' coverage in knowledge graphs (KGs), few-shot knowledge graph completion (FKGC) has recently gained more research interests. Some existing models employ a few-shot relation's multi-hop neighbor information to enhance its semantic representation. However, noise neighbor information might be amplified when the neighborhood is excessively sparse and no neighbor is available to represent the few-shot relation. Moreover, modeling and inferring complex relations of one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N) by previous knowledge graph completion approaches requires high model complexity and a large amount of training instances. Thus, inferring complex relations in the few-shot scenario is difficult for FKGC models due to limited training instances. In this paper, we propose a few-shot relational learning with global-local framework to address the above issues. At the global stage, a novel gated and attentive neighbor aggregator is built for accurately integrating the semantics of a few-shot relation's neighborhood, which helps filtering the noise neighbors even if a KG contains extremely sparse neighborhoods. For the local stage, a meta-learning based TransH (MTransH) method is designed to model complex relations and train our model in a few-shot learning fashion. Extensive experiments show that our model outperforms the state-of-the-art FKGC approaches on the frequently-used benchmark datasets NELL-One and Wiki-One. Compared with the strong baseline model MetaR, our model achieves 5-shot FKGC performance improvements of 8.0% on NELL-One and 2.8% on Wiki-One by the metric Hits@10.