While a difference-in-differences (DID) design was originally developed with one pre- and one post-treatment period, data from additional pre-treatment periods are often available. How can researchers improve the DID design with such multiple pre-treatment periods under what conditions? We first use potential outcomes to clarify three benefits of multiple pre-treatment periods: (1) assessing the parallel trends assumption, (2) improving estimation accuracy, and (3) allowing for a more flexible parallel trends assumption. We then propose a new estimator, double DID, which combines all the benefits through the generalized method of moments and contains the two-way fixed effects regression as a special case. We show that the double DID requires a weaker assumption about outcome trends and is more efficient than existing DID estimators. We also generalize the double DID to the staggered adoption design where different units can receive the treatment in different time periods. We illustrate the proposed method with two empirical applications, covering both the basic DID and staggered adoption designs. We offer an open-source R package that implements the proposed methodologies.
A central aspect of robotic motion planning is collision avoidance, where a multitude of different approaches are currently in use. Optimization-based motion planning is one method, that often heavily relies on distance computations between robots and obstacles. These computations can easily become a bottleneck, as they do not scale well with the complexity of the robots or the environment. To improve performance, many different methods suggested to use collision primitives, i.e. simple shapes that approximate the more complex rigid bodies, and that are simpler to compute distances to and from. However, each pair of primitives requires its own specialized code, and certain pairs are known to suffer from numerical issues. In this paper, we propose an easy-to-use, unified treatment of a wide variety of primitives. We formulate distance computation as a minimization problem, which we solve iteratively. We show how to take derivatives of this minimization problem, allowing it to be seamlessly integrated into a trajectory optimization method. Our experiments show that our method performs favourably, both in terms of timing and the quality of the trajectory. The source code of our implementation will be released upon acceptance.
Applications of Reinforcement Learning (RL), in which agents learn to make a sequence of decisions despite lacking complete information about the latent states of the controlled system, that is, they act under partial observability of the states, are ubiquitous. Partially observable RL can be notoriously difficult -- well-known information-theoretic results show that learning partially observable Markov decision processes (POMDPs) requires an exponential number of samples in the worst case. Yet, this does not rule out the existence of large subclasses of POMDPs over which learning is tractable. In this paper we identify such a subclass, which we call weakly revealing POMDPs. This family rules out the pathological instances of POMDPs where observations are uninformative to a degree that makes learning hard. We prove that for weakly revealing POMDPs, a simple algorithm combining optimism and Maximum Likelihood Estimation (MLE) is sufficient to guarantee polynomial sample complexity. To the best of our knowledge, this is the first provably sample-efficient result for learning from interactions in overcomplete POMDPs, where the number of latent states can be larger than the number of observations.
Health-policy planning requires evidence on the burden that epidemics place on healthcare systems. Multiple, often dependent, datasets provide a noisy and fragmented signal from the unobserved epidemic process including transmission and severity dynamics. This paper explores important challenges to the use of state-space models for epidemic inference when multiple dependent datasets are analysed. We propose a new semi-stochastic model that exploits deterministic approximations for large-scale transmission dynamics while retaining stochasticity in the occurrence and reporting of relatively rare severe events. This model is suitable for many real-time situations including large seasonal epidemics and pandemics. Within this context, we develop algorithms to provide exact parameter inference and test them via simulation. Finally, we apply our joint model and the proposed algorithm to several surveillance data on the 2017-18 influenza epidemic in England to reconstruct transmission dynamics and estimate the daily new influenza infections as well as severity indicators as the case-hospitalisation risk and the hospital-intensive care risk.
Recent work has demonstrated that motion planners' performance can be significantly improved by retrieving past experiences from a database. Typically, the experience database is queried for past similar problems using a similarity function defined over the motion planning problems. However, to date, most works rely on simple hand-crafted similarity functions and fail to generalize outside their corresponding training dataset. To address this limitation, we propose (FIRE), a framework that extracts local representations of planning problems and learns a similarity function over them. To generate the training data we introduce a novel self-supervised method that identifies similar and dissimilar pairs of local primitives from past solution paths. With these pairs, a Siamese network is trained with the contrastive loss and the similarity function is realized in the network's latent space. We evaluate FIRE on an 8-DOF manipulator in five categories of motion planning problems with sensed environments. Our experiments show that FIRE retrieves relevant experiences which can informatively guide sampling-based planners even in problems outside its training distribution, outperforming other baselines.
Modern web services routinely provide REST APIs for clients to access their functionality. These APIs present unique challenges and opportunities for automated testing, driving the recent development of many techniques and tools that generate test cases for API endpoints using various strategies. Understanding how these techniques compare to one another is difficult, as they have been evaluated on different benchmarks and using different metrics. To fill this gap, we performed an empirical study aimed to understand the landscape in automated testing of REST APIs and guide future research in this area. We first identified, through a systematic selection process, a set of 10 state-of-the-art REST API testing tools that included tools developed by both researchers and practitioners. We then applied these tools to a benchmark of 20 real-world open-source RESTful services and analyzed their performance in terms of code coverage achieved and unique failures triggered. This analysis allowed us to identify strengths, weaknesses, and limitations of the tools considered and of their underlying strategies, as well as implications of our findings for future research in this area.
The concept of federated learning (FL) was first proposed by Google in 2016. Thereafter, FL has been widely studied for the feasibility of application in various fields due to its potential to make full use of data without compromising the privacy. However, limited by the capacity of wireless data transmission, the employment of federated learning on mobile devices has been making slow progress in practical. The development and commercialization of the 5th generation (5G) mobile networks has shed some light on this. In this paper, we analyze the challenges of existing federated learning schemes for mobile devices and propose a novel cross-device federated learning framework, which utilizes the anonymous communication technology and ring signature to protect the privacy of participants while reducing the computation overhead of mobile devices participating in FL. In addition, our scheme implements a contribution-based incentive mechanism to encourage mobile users to participate in FL. We also give a case study of autonomous driving. Finally, we present the performance evaluation of the proposed scheme and discuss some open issues in federated learning.
Federated learning with differential privacy, or private federated learning, provides a strategy to train machine learning models while respecting users' privacy. However, differential privacy can disproportionately degrade the performance of the models on under-represented groups, as these parts of the distribution are difficult to learn in the presence of noise. Existing approaches for enforcing fairness in machine learning models have considered the centralized setting, in which the algorithm has access to the users' data. This paper introduces an algorithm to enforce group fairness in private federated learning, where users' data does not leave their devices. First, the paper extends the modified method of differential multipliers to empirical risk minimization with fairness constraints, thus providing an algorithm to enforce fairness in the central setting. Then, this algorithm is extended to the private federated learning setting. The proposed algorithm, \texttt{FPFL}, is tested on a federated version of the Adult dataset and an "unfair" version of the FEMNIST dataset. The experiments on these datasets show how private federated learning accentuates unfairness in the trained models, and how FPFL is able to mitigate such unfairness.
Gradient descent is slow to converge for ill-conditioned problems and non-convex problems. An important technique for acceleration is step-size adaptation. The first part of this paper contains a detailed review of step-size adaptation methods, including Polyak step-size, L4, LossGrad, Adam, IDBD, and Hypergradient descent, and the relation of step-size adaptation to meta-gradient methods. In the second part of this paper, we propose a new class of methods of accelerating gradient descent that have some distinctiveness from existing techniques. The new methods, which we call {\em step-size planning}, use the {\em update experience} to learn an improved way of updating the parameters. The methods organize the experience into $K$ steps away from each other to facilitate planning. From the past experience, our planning algorithm, Csawg, learns a step-size model which is a form of multi-step machine that predicts future updates. We extends Csawg to applying step-size planning multiple steps, which leads to further speedup. We discuss and highlight the projection power of the diagonal-matrix step-size for future large scale applications. We show for a convex problem, our methods can surpass the convergence rate of Nesterov's accelerated gradient, $1 - \sqrt{\mu/L}$, where $\mu, L$ are the strongly convex factor of the loss function $F$ and the Lipschitz constant of $F'$, which is the theoretical limit for the convergence rate of first-order methods. On the well-known non-convex Rosenbrock function, our planning methods achieve zero error below 500 gradient evaluations, while gradient descent takes about 10000 gradient evaluations to reach a $10^{-3}$ accuracy. We discuss the connection of step-size planing to planning in reinforcement learning, in particular, Dyna architectures.
We present a pipelined multiplier with reduced activities and minimized interconnect based on online digit-serial arithmetic. The working precision has been truncated such that $p<n$ bits are used to compute $n$ bits product, resulting in significant savings in area and power. The digit slices follow variable precision according to input, increasing upto $p$ and then decreases according to the error profile. Pipelining has been done to achieve high throughput and low latency which is desirable for compute intensive inner products. Synthesis results of the proposed designs have been presented and compared with the non-pipelined online multiplier, pipelined online multiplier with full working precision and conventional serial-parallel and array multipliers. For $8, 16, 24$ and $32$ bit precision, the proposed low power pipelined design show upto $38\%$ and $44\%$ reduction in power and area respectively compared to the pipelined online multiplier without working precision truncation.
Clustering is one of the most fundamental and wide-spread techniques in exploratory data analysis. Yet, the basic approach to clustering has not really changed: a practitioner hand-picks a task-specific clustering loss to optimize and fit the given data to reveal the underlying cluster structure. Some types of losses---such as k-means, or its non-linear version: kernelized k-means (centroid based), and DBSCAN (density based)---are popular choices due to their good empirical performance on a range of applications. Although every so often the clustering output using these standard losses fails to reveal the underlying structure, and the practitioner has to custom-design their own variation. In this work we take an intrinsically different approach to clustering: rather than fitting a dataset to a specific clustering loss, we train a recurrent model that learns how to cluster. The model uses as training pairs examples of datasets (as input) and its corresponding cluster identities (as output). By providing multiple types of training datasets as inputs, our model has the ability to generalize well on unseen datasets (new clustering tasks). Our experiments reveal that by training on simple synthetically generated datasets or on existing real datasets, we can achieve better clustering performance on unseen real-world datasets when compared with standard benchmark clustering techniques. Our meta clustering model works well even for small datasets where the usual deep learning models tend to perform worse.