亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Social relationships in the digital sphere are becoming more usual and frequent, and they constitute a very important aspect for all of us. {Violent interactions in this sphere are very frequent, and have serious effects on the victims}. Within this global scenario, there is one kind of digital violence that is becoming really worrying: sexism against women. Sexist comments that are publicly posted in social media (newspaper comments, social networks, etc.), usually obtain a lot of attention and become viral, with consequent damage to the persons involved. In this paper, we introduce an anti-sexism alert system, based on natural language processing (NLP) and artificial intelligence (AI), that analyzes any public post, and decides if it could be considered a sexist comment or not. Additionally, this system also works on analyzing all the public comments linked to any multimedia content (piece of news, video, tweet, etc.) and decides, using a color-based system similar to traffic lights, if there is sexism in the global set of posts. We have created a labeled data set in Spanish, since the majority of studies focus on English, to train our system, which offers a very good performance after the validation experiments.

相關內容

Foundation models that incorporate language, vision, and more recently actions have revolutionized the ability to harness internet scale data to reason about useful tasks. However, one of the key challenges of training embodied foundation models is the lack of data grounded in the physical world. In this paper, we propose AutoRT, a system that leverages existing foundation models to scale up the deployment of operational robots in completely unseen scenarios with minimal human supervision. AutoRT leverages vision-language models (VLMs) for scene understanding and grounding, and further uses large language models (LLMs) for proposing diverse and novel instructions to be performed by a fleet of robots. Guiding data collection by tapping into the knowledge of foundation models enables AutoRT to effectively reason about autonomy tradeoffs and safety while significantly scaling up data collection for robot learning. We demonstrate AutoRT proposing instructions to over 20 robots across multiple buildings and collecting 77k real robot episodes via both teleoperation and autonomous robot policies. We experimentally show that such "in-the-wild" data collected by AutoRT is significantly more diverse, and that AutoRT's use of LLMs allows for instruction following data collection robots that can align to human preferences.

Recent years have seen significant advances in quantum/quantum-inspired technologies capable of approximately searching for the ground state of Ising spin Hamiltonians. The promise of leveraging such technologies to accelerate the solution of difficult optimization problems has spurred an increased interest in exploring methods to integrate Ising problems as part of their solution process, with existing approaches ranging from direct transcription to hybrid quantum-classical approaches rooted in existing optimization algorithms. While it is widely acknowledged that quantum computers should augment classical computers, rather than replace them entirely, comparatively little attention has been directed toward deriving analytical characterizations of their interactions. In this paper, we present a formal analysis of hybrid algorithms in the context of solving mixed-binary quadratic programs (MBQP) via Ising solvers. By leveraging an existing completely positive reformulation of MBQPs, as well as a new strong-duality result, we show the exactness of the dual problem over the cone of copositive matrices, thus allowing the resulting reformulation to inherit the straightforward analysis of convex optimization. We propose to solve this reformulation with a hybrid quantum-classical cutting-plane algorithm. Using existing complexity results for convex cutting-plane algorithms, we deduce that the classical portion of this hybrid framework is guaranteed to be polynomial time. This suggests that when applied to NP-hard problems, the complexity of the solution is shifted onto the subroutine handled by the Ising solver.

Recent advances in Deep Learning and Computer Vision have been successfully leveraged to serve marginalized communities in various contexts. One such area is Sign Language - a primary means of communication for the deaf community. However, so far, the bulk of research efforts and investments have gone into American Sign Language, and research activity into low-resource sign languages - especially Bangla Sign Language - has lagged significantly. In this research paper, we present a new word-level Bangla Sign Language dataset - BdSL40 - consisting of 611 videos over 40 words, along with two different approaches: one with a 3D Convolutional Neural Network model and another with a novel Graph Neural Network approach for the classification of BdSL40 dataset. This is the first study on word-level BdSL recognition, and the dataset was transcribed from Indian Sign Language (ISL) using the Bangla Sign Language Dictionary (1997). The proposed GNN model achieved an F1 score of 89%. The study highlights the significant lexical and semantic similarity between BdSL, West Bengal Sign Language, and ISL, and the lack of word-level datasets for BdSL in the literature. We release the dataset and source code to stimulate further research.

Memory bandwidth is known to be a performance bottleneck for FPGA accelerators, especially when they deal with large multi-dimensional data-sets. A large body of work focuses on reducing of off-chip transfers, but few authors try to improve the efficiency of transfers. This paper addresses the later issue by proposing (i) a compiler-based approach to accelerator's data layout to maximize contiguous access to off-chip memory, and (ii) data packing and runtime compression techniques that take advantage of this layout to further improve memory performance. We show that our approach can decrease the I/O cycles up to $7\times$ compared to un-optimized memory accesses.

Can we build a single large model for a wide range of PDE-related scientific learning tasks? Can this model generalize to new PDEs, even of new forms, without any fine-tuning? In-context operator learning and the corresponding model In-Context Operator Networks (ICON) represent an initial exploration of these questions. The capability of ICON regarding the first question has been demonstrated previously. In this paper, we present a detailed methodology for solving PDE problems with ICON, and show how a single ICON model can make forward and reverse predictions for different equations with different strides, provided with appropriately designed data prompts. We show the positive evidence to the second question, i.e., ICON can generalize well to some PDEs with new forms without any fine-tuning. This is exemplified through a study on 1D scalar nonlinear conservation laws, a family of PDEs with temporal evolution. We also show how to broaden the range of problems that an ICON model can address, by transforming functions and equations to ICON's capability scope. We believe that the progress in this paper is a significant step towards the goal of training a foundation model for PDE-related tasks under the in-context operator learning framework.

Children typically learn to identify and express emotions through sharing their stories and feelings with others, particularly their family. However, it is challenging for parents or siblings to have emotional communication with children since children are still developing their communication skills. We present ChaCha, a chatbot that encourages and guides children to share personal events and associated emotions. ChaCha combines a state machine and large language models (LLMs) to keep the dialogue on track while carrying on free-form conversations. Through an exploratory study with 20 children (aged 8-12), we examine how ChaCha prompts children to share personal events and guides them to describe associated emotions. Participants perceived ChaCha as a close friend and shared their stories on various topics, such as family trips and personal achievements. Based on the findings, we discuss opportunities for leveraging LLMs to design child-friendly chatbots to support children in sharing emotions.

The deliberative potential of online platforms has been widely examined. However, little is known about how various interface-based reflection nudges impact the quality of deliberation. This paper presents two user studies with 12 and 120 participants, respectively, to investigate the impacts of different reflective nudges on the quality of deliberation. In the first study, we examined five distinct reflective nudges: persona, temporal prompts, analogies and metaphors, cultural prompts and storytelling. Persona, temporal prompts, and storytelling emerged as the preferred nudges for implementation on online deliberation platforms. In the second study, we assess the impacts of these preferred reflectors more thoroughly. Results revealed a significant positive impact of these reflectors on deliberative quality. Specifically, persona promotes a deliberative environment for balanced and opinionated viewpoints while temporal prompts promote more individualised viewpoints. Our findings suggest that the choice of reflectors can significantly influence the dynamics and shape the nature of online discussions.

Temporal characteristics are prominently evident in a substantial volume of knowledge, which underscores the pivotal role of Temporal Knowledge Graphs (TKGs) in both academia and industry. However, TKGs often suffer from incompleteness for three main reasons: the continuous emergence of new knowledge, the weakness of the algorithm for extracting structured information from unstructured data, and the lack of information in the source dataset. Thus, the task of Temporal Knowledge Graph Completion (TKGC) has attracted increasing attention, aiming to predict missing items based on the available information. In this paper, we provide a comprehensive review of TKGC methods and their details. Specifically, this paper mainly consists of three components, namely, 1)Background, which covers the preliminaries of TKGC methods, loss functions required for training, as well as the dataset and evaluation protocol; 2)Interpolation, that estimates and predicts the missing elements or set of elements through the relevant available information. It further categorizes related TKGC methods based on how to process temporal information; 3)Extrapolation, which typically focuses on continuous TKGs and predicts future events, and then classifies all extrapolation methods based on the algorithms they utilize. We further pinpoint the challenges and discuss future research directions of TKGC.

The Pretrained Foundation Models (PFMs) are regarded as the foundation for various downstream tasks with different data modalities. A pretrained foundation model, such as BERT, GPT-3, MAE, DALLE-E, and ChatGPT, is trained on large-scale data which provides a reasonable parameter initialization for a wide range of downstream applications. The idea of pretraining behind PFMs plays an important role in the application of large models. Different from previous methods that apply convolution and recurrent modules for feature extractions, the generative pre-training (GPT) method applies Transformer as the feature extractor and is trained on large datasets with an autoregressive paradigm. Similarly, the BERT apples transformers to train on large datasets as a contextual language model. Recently, the ChatGPT shows promising success on large language models, which applies an autoregressive language model with zero shot or few show prompting. With the extraordinary success of PFMs, AI has made waves in a variety of fields over the past few years. Considerable methods, datasets, and evaluation metrics have been proposed in the literature, the need is raising for an updated survey. This study provides a comprehensive review of recent research advancements, current and future challenges, and opportunities for PFMs in text, image, graph, as well as other data modalities. We first review the basic components and existing pretraining in natural language processing, computer vision, and graph learning. We then discuss other advanced PFMs for other data modalities and unified PFMs considering the data quality and quantity. Besides, we discuss relevant research about the fundamentals of the PFM, including model efficiency and compression, security, and privacy. Finally, we lay out key implications, future research directions, challenges, and open problems.

By interacting, synchronizing, and cooperating with its physical counterpart in real time, digital twin is promised to promote an intelligent, predictive, and optimized modern city. Via interconnecting massive physical entities and their virtual twins with inter-twin and intra-twin communications, the Internet of digital twins (IoDT) enables free data exchange, dynamic mission cooperation, and efficient information aggregation for composite insights across vast physical/virtual entities. However, as IoDT incorporates various cutting-edge technologies to spawn the new ecology, severe known/unknown security flaws and privacy invasions of IoDT hinders its wide deployment. Besides, the intrinsic characteristics of IoDT such as \emph{decentralized structure}, \emph{information-centric routing} and \emph{semantic communications} entail critical challenges for security service provisioning in IoDT. To this end, this paper presents an in-depth review of the IoDT with respect to system architecture, enabling technologies, and security/privacy issues. Specifically, we first explore a novel distributed IoDT architecture with cyber-physical interactions and discuss its key characteristics and communication modes. Afterward, we investigate the taxonomy of security and privacy threats in IoDT, discuss the key research challenges, and review the state-of-the-art defense approaches. Finally, we point out the new trends and open research directions related to IoDT.

北京阿比特科技有限公司