亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

I present a replication and, to some extent, a refutation of key results published by Zhong, Zhang, Li, Dai, & Yang in their 2022 paper "Species coexistence in spatial cyclic game of five species" (Chaos, Solitons and Fractals, 156: 111806), where ecosystem species coexistence was explored via simulation studies of the evolutionary spatial cyclic game (ESCG) Rock-Paper-Scissors-Lizard-Spock (RPSLS) with certain predator-prey relationships removed from the game's "interaction structure", i.e. with specific arcs ablated in the ESCG's dominance network, and with the ESCG run for 100,000 Monte Carlo Steps (MCS) to identify its asymptotic behaviors. I replicate the results presented by Zhong et al. for interaction structures with one, two, three, and four arcs ablated from the dominance network. I then empirically demonstrate that the dynamics of the RPSLS ESCG have sufficiently long time constants that the true asymptotic outcomes can often only be identified after running the ablated ESCG for 10,000,000MCS or longer, and that the true long-term outcomes can be markedly less diverse than those reported by Zhong et al. as asymptotic. Finally I demonstrate that, when run for sufficiently many MCS, the original unablated RPSLS system exhibits essentially the same asymptotic outcomes as the ablated RPSLS systems, and in this sense the only causal effect of the ablations is to alter the time required for the system to converge to the long-term asymptotic states that the unablated system eventually settles to anyhow.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會(hui)議(yi)。 Publisher:IFIP。 SIT:

There is an urgent need to identify both short and long-term risks from newly emerging types of Artificial Intelligence (AI), as well as available risk management measures. In response, and to support global efforts in regulating AI and writing safety standards, we compile an extensive catalog of risk sources and risk management measures for general-purpose AI (GPAI) systems, complete with descriptions and supporting examples where relevant. This work involves identifying technical, operational, and societal risks across model development, training, and deployment stages, as well as surveying established and experimental methods for managing these risks. To the best of our knowledge, this paper is the first of its kind to provide extensive documentation of both GPAI risk sources and risk management measures that are descriptive, self-contained and neutral with respect to any existing regulatory framework. This work intends to help AI providers, standards experts, researchers, policymakers, and regulators in identifying and mitigating systemic risks from GPAI systems. For this reason, the catalog is released under a public domain license for ease of direct use by stakeholders in AI governance and standards.

During the past decade, Deep Neural Networks (DNNs) proved their value on a large variety of subjects. However despite their high value and public accessibility, the protection of the intellectual property of DNNs is still an issue and an emerging research field. Recent works have successfully extracted fully-connected DNNs using cryptanalytic methods in hard-label settings, proving that it was possible to copy a DNN with high fidelity, i.e., high similitude in the output predictions. However, the current cryptanalytic attacks cannot target complex, i.e., not fully connected, DNNs and are limited to special cases of neurons present in deep networks. In this work, we introduce a new end-to-end attack framework designed for model extraction of embedded DNNs with high fidelity. We describe a new black-box side-channel attack which splits the DNN in several linear parts for which we can perform cryptanalytic extraction and retrieve the weights in hard-label settings. With this method, we are able to adapt cryptanalytic extraction, for the first time, to non-fully connected DNNs, while maintaining a high fidelity. We validate our contributions by targeting several architectures implemented on a microcontroller unit, including a Multi-Layer Perceptron (MLP) of 1.7 million parameters and a shortened MobileNetv1. Our framework successfully extracts all of these DNNs with high fidelity (88.4% for the MobileNetv1 and 93.2% for the MLP). Furthermore, we use the stolen model to generate adversarial examples and achieve close to white-box performance on the victim's model (95.8% and 96.7% transfer rate).

The application of Multiple Unmanned Aerial Vehicles (Multi-UAV) in Wilderness Search and Rescue (WiSAR) significantly enhances mission success due to their rapid coverage of search areas from high altitudes and their adaptability to complex terrains. This capability is particularly crucial because time is a critical factor in searching for a lost person in the wilderness; as time passes, survival rates decrease and the search area expands. The probability of success in such searches can be further improved if UAVs leverage terrain features to predict the lost person's position. In this paper, we aim to enhance search missions by proposing a smart agent-based probability model that combines Monte Carlo simulations with an agent strategy list, mimicking the behavior of a lost person in the wildness areas. Furthermore, we develop a distributed Multi-UAV receding horizon search strategy with dynamic partitioning, utilizing the generated probability density model as prior information to prioritize locations where the lost person is most likely to be found. Simulated search experiments across different terrains have been conducted to validate the search efficiency of the proposed methods compared to other benchmark methods.

This paper proposes a Chinese spelling correction method based on plugin extension modules, aimed at addressing the limitations of existing models in handling domain-specific texts. Traditional Chinese spelling correction models are typically trained on general-domain datasets, resulting in poor performance when encountering specialized terminology in domain-specific texts. To address this issue, we design an extension module that learns the features of domain-specific terminology, thereby enhancing the model's correction capabilities within specific domains. This extension module can provide domain knowledge to the model without compromising its general spelling correction performance, thus improving its accuracy in specialized fields. Experimental results demonstrate that after integrating extension modules for medical, legal, and official document domains, the model's correction performance is significantly improved compared to the baseline model without any extension modules.

Printed Electronics (PE) feature distinct and remarkable characteristics that make them a prominent technology for achieving true ubiquitous computing. This is particularly relevant in application domains that require conformal and ultra-low cost solutions, which have experienced limited penetration of computing until now. Unlike silicon-based technologies, PE offer unparalleled features such as non-recurring engineering costs, ultra-low manufacturing cost, and on-demand fabrication of conformal, flexible, non-toxic, and stretchable hardware. However, PE face certain limitations due to their large feature sizes, that impede the realization of complex circuits, such as machine learning classifiers. In this work, we address these limitations by leveraging the principles of Approximate Computing and Bespoke (fully-customized) design. We propose an automated framework for designing ultra-low power Multilayer Perceptron (MLP) classifiers which employs, for the first time, a holistic approach to approximate all functions of the MLP's neurons: multiplication, accumulation, and activation. Through comprehensive evaluation across various MLPs of varying size, our framework demonstrates the ability to enable battery-powered operation of even the most intricate MLP architecture examined, significantly surpassing the current state of the art.

This manuscript delves into the intersection of genomics and phenotypic prediction, focusing on the statistical innovation required to navigate the complexities introduced by noisy covariates and confounders. The primary emphasis is on the development of advanced robust statistical models tailored for genomic prediction from single nucleotide polymorphism data in plant and animal breeding and multi-field trials. The manuscript highlights the significance of incorporating all estimated effects of marker loci into the statistical framework and aiming to reduce the high dimensionality of data while preserving critical information. This paper introduces a new robust statistical framework for genomic prediction, employing one-stage and two-stage linear mixed model analyses along with utilizing the popular robust minimum density power divergence estimator (MDPDE) to estimate genetic effects on phenotypic traits. The study illustrates the superior performance of the proposed MDPDE-based genomic prediction and associated heritability estimation procedures over existing competitors through extensive empirical experiments on artificial datasets and application to a real-life maize breeding dataset. The results showcase the robustness and accuracy of the proposed MDPDE-based approaches, especially in the presence of data contamination, emphasizing their potential applications in improving breeding programs and advancing genomic prediction of phenotyping traits.

The key to OOD detection has two aspects: generalized feature representation and precise category description. Recently, vision-language models such as CLIP provide significant advances in both two issues, but constructing precise category descriptions is still in its infancy due to the absence of unseen categories. This work introduces two hierarchical contexts, namely perceptual context and spurious context, to carefully describe the precise category boundary through automatic prompt tuning. Specifically, perceptual contexts perceive the inter-category difference (e.g., cats vs apples) for current classification tasks, while spurious contexts further identify spurious (similar but exactly not) OOD samples for every single category (e.g., cats vs panthers, apples vs peaches). The two contexts hierarchically construct the precise description for a certain category, which is, first roughly classifying a sample to the predicted category and then delicately identifying whether it is truly an ID sample or actually OOD. Moreover, the precise descriptions for those categories within the vision-language framework present a novel application: CATegory-EXtensible OOD detection (CATEX). One can efficiently extend the set of recognizable categories by simply merging the hierarchical contexts learned under different sub-task settings. And extensive experiments are conducted to demonstrate CATEX's effectiveness, robustness, and category-extensibility. For instance, CATEX consistently surpasses the rivals by a large margin with several protocols on the challenging ImageNet-1K dataset. In addition, we offer new insights on how to efficiently scale up the prompt engineering in vision-language models to recognize thousands of object categories, as well as how to incorporate large language models (like GPT-3) to boost zero-shot applications. Code is publicly available at //github.com/alibaba/catex.

In recent years, brain-computer interfaces have made advances in decoding various motor-related tasks, including gesture recognition and movement classification, utilizing electroencephalogram (EEG) data. These developments are fundamental in exploring how neural signals can be interpreted to recognize specific physical actions. This study centers on a written alphabet classification task, where we aim to decode EEG signals associated with handwriting. To achieve this, we incorporate hand kinematics to guide the extraction of the consistent embeddings from high-dimensional neural recordings using auxiliary variables (CEBRA). These CEBRA embeddings, along with the EEG, are processed by a parallel convolutional neural network model that extracts features from both data sources simultaneously. The model classifies nine different handwritten characters, including symbols such as exclamation marks and commas, within the alphabet. We evaluate the model using a quantitative five-fold cross-validation approach and explore the structure of the embedding space through visualizations. Our approach achieves a classification accuracy of 91 % for the nine-class task, demonstrating the feasibility of fine-grained handwriting decoding from EEG.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

北京阿比特科技有限公司