亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problem of parametric estimation for continuously observed stochastic differential equation driven by fractional Brownian motion. Under some assumptions on drift and diffusion coefficients, we construct maximum likelihood estimator and establish its the asymptotic normality and moment convergence of the drift parameter when a small dispersion coefficient vanishes.

相關內容

Inverse problems, such as accelerated MRI reconstruction, are ill-posed and an infinite amount of possible and plausible solutions exist. This may not only lead to uncertainty in the reconstructed image but also in downstream tasks such as semantic segmentation. This uncertainty, however, is mostly not analyzed in the literature, even though probabilistic reconstruction models are commonly used. These models can be prone to ignore plausible but unlikely solutions like rare pathologies. Building on MRI reconstruction approaches based on diffusion models, we add guidance to the diffusion process during inference, generating two meaningfully diverse reconstructions corresponding to an upper and lower bound segmentation. The reconstruction uncertainty can then be quantified by the difference between these bounds, which we coin the 'uncertainty boundary'. We analyzed the behavior of the upper and lower bound segmentations for a wide range of acceleration factors and found the uncertainty boundary to be both more reliable and more accurate compared to repeated sampling. Code is available at //github.com/NikolasMorshuis/SGR

The coefficients in a second order parabolic linear stochastic partial differential equation (SPDE) are estimated from multiple spatially localised measurements. Assuming that the spatial resolution tends to zero and the number of measurements is non-decreasing, the rate of convergence for each coefficient depends on its differential order and is faster for higher order coefficients. Based on an explicit analysis of the reproducing kernel Hilbert space of a general stochastic evolution equation, a Gaussian lower bound scheme is introduced. As a result, minimax optimality of the rates as well as sufficient and necessary conditions for consistent estimation are established.

We study the disassortative stochastic block model with three communities, a well-studied model of graph partitioning and Bayesian inference for which detailed predictions based on the cavity method exist [Decelle et al. (2011)]. We provide strong evidence that for a part of the phase where efficient algorithms exist that approximately reconstruct the communities, inference based on maximum a posteriori (MAP) fails. In other words, we show that there exist modes of the posterior distribution that have a vanishing agreement with the ground truth. The proof is based on the analysis of a graph colouring algorithm from [Achlioptas and Moore (2003)].

The maximal regularity property of discontinuous Galerkin methods for linear parabolic equations is used together with variational techniques to establish a priori and a posteriori error estimates of optimal order under optimal regularity assumptions. The analysis is set in the maximal regularity framework of UMD Banach spaces. Similar results were proved in an earlier work, based on the consistency analysis of Radau IIA methods. The present error analysis, which is based on variational techniques, is of independent interest, but the main motivation is that it extends to nonlinear parabolic equations; in contrast to the earlier work. Both autonomous and nonautonomous linear equations are considered.

The current study investigates the asymptotic spectral properties of a finite difference approximation of nonlocal Helmholtz equations with a Caputo fractional Laplacian and a variable coefficient wave number $\mu$, as it occurs when considering a wave propagation in complex media, characterized by nonlocal interactions and spatially varying wave speeds. More specifically, by using tools from Toeplitz and generalized locally Toeplitz theory, the present research delves into the spectral analysis of nonpreconditioned and preconditioned matrix-sequences. We report numerical evidences supporting the theoretical findings. Finally, open problems and potential extensions in various directions are presented and briefly discussed.

Morphic sequences form a natural class of infinite sequences, typically defined as the coding of a fixed point of a morphism. Different morphisms and codings may yield the same morphic sequence. This paper investigates how to prove that two such representations of a morphic sequence by morphisms represent the same sequence. In particular, we focus on the smallest representations of the subsequences of the binary Fibonacci sequence obtained by only taking the even or odd elements. The proofs we give are induction proofs of several properties simultaneously, and are typically found fully automatically by a tool that we developed.

We introduce a theoretical and practical framework for efficient importance sampling of mini-batch samples for gradient estimation from single and multiple probability distributions. To handle noisy gradients, our framework dynamically evolves the importance distribution during training by utilizing a self-adaptive metric. Our framework combines multiple, diverse sampling distributions, each tailored to specific parameter gradients. This approach facilitates the importance sampling of vector-valued gradient estimation. Rather than naively combining multiple distributions, our framework involves optimally weighting data contribution across multiple distributions. This adapted combination of multiple importance yields superior gradient estimates, leading to faster training convergence. We demonstrate the effectiveness of our approach through empirical evaluations across a range of optimization tasks like classification and regression on both image and point cloud datasets.

We discuss a connection between a generative model, called the diffusion model, and nonequilibrium thermodynamics for the Fokker-Planck equation, called stochastic thermodynamics. Based on the techniques of stochastic thermodynamics, we derive the speed-accuracy trade-off for the diffusion models, which is a trade-off relationship between the speed and accuracy of data generation in diffusion models. Our result implies that the entropy production rate in the forward process affects the errors in data generation. From a stochastic thermodynamic perspective, our results provide quantitative insight into how best to generate data in diffusion models. The optimal learning protocol is introduced by the conservative force in stochastic thermodynamics and the geodesic of space by the 2-Wasserstein distance in optimal transport theory. We numerically illustrate the validity of the speed-accuracy trade-off for the diffusion models with different noise schedules such as the cosine schedule, the conditional optimal transport, and the optimal transport.

We set up, at the abstract Hilbert space setting, the general question on when an inverse linear problem induced by an operator of Friedrichs type admits solutions belonging to (the closure of) the Krylov subspace associated to such operator. Such Krylov solvability of abstract Friedrichs systems allows to predict when, for concrete differential inverse problems, truncation algorithms can or cannot reproduce the exact solutions in terms of approximants from the Krylov subspace.

New differential-recurrence relations for B-spline basis functions are given. Using these relations, a recursive method for finding the Bernstein-B\'{e}zier coefficients of B-spline basis functions over a single knot span is proposed. The algorithm works for any knot sequence and has an asymptotically optimal computational complexity. Numerical experiments show that the new method gives results which preserve a high number of digits when compared to an approach which uses the well-known de Boor-Cox formula.

北京阿比特科技有限公司