亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Motivated by the importance of dynamic programming (DP) in parameterized complexity, we consider several fine-grained questions, such as the following examples: (i) can Dominating Set be solved in time $(3-\epsilon)^{pw}n^{O(1)}$? (where $pw$ is the pathwidth) (ii) can Coloring be solved in time $pw^{(1-\epsilon)pw}n^{O(1)}$? (iii) can a short reconfiguration between two size-$k$ independent sets be found in time $n^{(1-\epsilon)k}$? Such questions are well-studied: in some cases the answer is No under the SETH, while in others coarse-grained lower bounds are known under the ETH. Even though questions such as the above seem "morally equivalent" as they all ask if a simple DP can be improved, the problems concerned have wildly varying time complexities, ranging from single-exponential FPT to XNLP-complete. This paper's main contribution is to show that, despite their varying complexities, these questions are not just morally equivalent, but in fact they are the same question in disguise. We achieve this by putting forth a natural complexity assumption which we call the Primal Pathwidth-Strong Exponential Time Hypothesis (pw-SETH) and which states that 3-SAT cannot be solved in time $(2-\epsilon)^{pw}n^{O(1)}$, for any $\epsilon>0$, where $pw$ is the pathwidth of the primal graph of the input. We then show that numerous fine-grained questions in parameterized complexity, including the ones above, are equivalent to the pw-SETH, and hence to each other. This allows us to obtain sharp fine-grained lower bounds for problems for which previous lower bounds left a constant in the exponent undetermined, but also to increase our confidence in bounds which were previously known under the SETH, because we show that breaking any one such bound requires breaking all (old and new) bounds; and because we show that the pw-SETH is more plausible than the SETH.

相關內容

We employ techniques from group theory to show that, in many cases, counting problems on graphs are almost as hard to solve in a small number of instances as they are in all instances. Specifically, we show the following results. 1. Goldreich (2020) asks if, for every constant $\delta < 1 / 2$, there is an $\tilde{O} \left( n^2 \right)$-time randomized reduction from computing the number of $k$-cliques modulo $2$ with a success probability of greater than $2 / 3$ to computing the number of $k$-cliques modulo $2$ with an error probability of at most $\delta$. In this work, we show that for almost all choices of the $\delta 2^{n \choose 2}$ corrupt answers within the average-case solver, we have a reduction taking $\tilde{O} \left( n^2 \right)$-time and tolerating an error probability of $\delta$ in the average-case solver for any constant $\delta < 1 / 2$. By "almost all", we mean that if we choose, with equal probability, any subset $S \subset \{0,1\}^{n \choose 2}$ with $|S| = \delta2^{n \choose 2}$, then with a probability of $1-2^{-\Omega \left( n^2 \right)}$, we can use an average-case solver corrupt on $S$ to obtain a probabilistic algorithm. 2. Inspired by the work of Goldreich and Rothblum in FOCS 2018 to take the weighted versions of the graph counting problems, we prove that if the RETH is true, then for a prime $p = \Theta \left( 2^n \right)$, the problem of counting the number of unique Hamiltonian cycles modulo $p$ on $n$-vertex directed multigraphs and the problem of counting the number of unique half-cliques modulo $p$ on $n$-vertex undirected multigraphs, both require exponential time to compute correctly on even a $1 / 2^{n/\log n}$-fraction of instances. Meanwhile, simply printing $0$ on all inputs is correct on at least a $\Omega \left( 1 / 2^n \right)$-fraction of instances.

This work addresses the fundamental linear inverse problem in compressive sensing (CS) by introducing a new type of regularizing generative prior. Our proposed method utilizes ideas from classical dictionary-based CS and, in particular, sparse Bayesian learning (SBL), to integrate a strong regularization towards sparse solutions. At the same time, by leveraging the notion of conditional Gaussianity, it also incorporates the adaptability from generative models to training data. However, unlike most state-of-the-art generative models, it is able to learn from a few compressed and noisy data samples and requires no optimization algorithm for solving the inverse problem. Additionally, similar to Dirichlet prior networks, our model parameterizes a conjugate prior enabling its application for uncertainty quantification. We support our approach theoretically through the concept of variational inference and validate it empirically using different types of compressible signals.

Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

In order to overcome the expressive limitations of graph neural networks (GNNs), we propose the first method that exploits vector flows over graphs to develop globally consistent directional and asymmetric aggregation functions. We show that our directional graph networks (DGNs) generalize convolutional neural networks (CNNs) when applied on a grid. Whereas recent theoretical works focus on understanding local neighbourhoods, local structures and local isomorphism with no global information flow, our novel theoretical framework allows directional convolutional kernels in any graph. First, by defining a vector field in the graph, we develop a method of applying directional derivatives and smoothing by projecting node-specific messages into the field. Then we propose the use of the Laplacian eigenvectors as such vector field, and we show that the method generalizes CNNs on an n-dimensional grid, and is provably more discriminative than standard GNNs regarding the Weisfeiler-Lehman 1-WL test. Finally, we bring the power of CNN data augmentation to graphs by providing a means of doing reflection, rotation and distortion on the underlying directional field. We evaluate our method on different standard benchmarks and see a relative error reduction of 8\% on the CIFAR10 graph dataset and 11% to 32% on the molecular ZINC dataset. An important outcome of this work is that it enables to translate any physical or biological problems with intrinsic directional axes into a graph network formalism with an embedded directional field.

Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved state-of-the-art performance in tasks such as node classification and link prediction. However, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. The limitations especially become problematic when learning representations on a misspecified graph or a heterogeneous graph that consists of various types of nodes and edges. In this paper, we propose Graph Transformer Networks (GTNs) that are capable of generating new graph structures, which involve identifying useful connections between unconnected nodes on the original graph, while learning effective node representation on the new graphs in an end-to-end fashion. Graph Transformer layer, a core layer of GTNs, learns a soft selection of edge types and composite relations for generating useful multi-hop connections so-called meta-paths. Our experiments show that GTNs learn new graph structures, based on data and tasks without domain knowledge, and yield powerful node representation via convolution on the new graphs. Without domain-specific graph preprocessing, GTNs achieved the best performance in all three benchmark node classification tasks against the state-of-the-art methods that require pre-defined meta-paths from domain knowledge.

We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning. It uses self-attention to iteratively reason about the relations between entities in a scene and to guide a model-free policy. Our results show that in a novel navigation and planning task called Box-World, our agent finds interpretable solutions that improve upon baselines in terms of sample complexity, ability to generalize to more complex scenes than experienced during training, and overall performance. In the StarCraft II Learning Environment, our agent achieves state-of-the-art performance on six mini-games -- surpassing human grandmaster performance on four. By considering architectural inductive biases, our work opens new directions for overcoming important, but stubborn, challenges in deep RL.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

北京阿比特科技有限公司