In this study, we investigate an anisotropic weakly over-penalised symmetric interior penalty method for the Stokes equation {on convex domains}. Our approach is a simple discontinuous Galerkin method similar to the Crouzeix--Raviart finite element method. As our primary contribution, we show a new proof for the consistency term, which allows us to obtain an estimate of the anisotropic consistency error. The key idea of the proof is to apply the relation between the Raviart--Thomas finite element space and a discontinuous space. While inf-sup stable schemes of the discontinuous Galerkin method on shape-regular mesh partitions have been widely discussed, our results show that the Stokes element satisfies the inf-sup condition on anisotropic meshes. Furthermore, we also provide an error estimate in an energy norm on anisotropic meshes. In numerical experiments, we compare calculation results for standard and anisotropic mesh partitions.
This paper introduces an efficient high-order numerical method for solving the 1D stationary Schr\"odinger equation in the highly oscillatory regime. Building upon the ideas from [2], we first analytically transform the given equation into a smoother (i.e. less oscillatory) equation. By developing sufficiently accurate quadratures for several (iterated) oscillatory integrals occurring in the Picard approximation of the solution, we obtain a one-step method that is third order w.r.t. the step size. The accuracy and efficiency of the method are illustrated through several numerical examples.
New geometric methods for fast evaluation of derivatives of polynomial and rational B\'{e}zier curves are proposed. They apply an algorithm for evaluating polynomial or rational B\'{e}zier curves, which was recently given by the authors. Numerical tests show that the new approach is more efficient than the methods which use the famous de Casteljau algorithm. The algorithms work well even for high-order derivatives of rational B\'{e}zier curves of high degrees.
In this note we consider the problem of ParaTuck-2 decomposition of a three-way tensor.We provide an algebraic algorithm for finding the ParaTuck-2 decomposition for the case when the ParaTuck-2 ranks are smaller than the frontal dimensions of the tensors.Our approach relies only on linear algebra operations and is based on finding the kernel of a structured matrix constructed from the tensor.
We propose a novel a posteriori error estimator for the N\'ed\'elec finite element discretization of time-harmonic Maxwell's equations. After the approximation of the electric field is computed, we propose a fully localized algorithm to reconstruct approximations to the electric displacement and the magnetic field, with such approximations respectively fulfilling suitable divergence and curl constraints. These reconstructed fields are in turn used to construct an a posteriori error estimator which is shown to be reliable and efficient. Specifically, the estimator controls the error from above up to a constant that tends to one as the mesh is refined and/or the polynomial degree is increased, and from below up to constant independent of $p$. Both bounds are also fully-robust in the low-frequency regime. The properties of the proposed estimator are illustrated on a set of numerical examples.
We analyze the Schr\"odingerisation method for quantum simulation of a general class of non-unitary dynamics with inhomogeneous source terms. The Schr\"odingerisation technique, introduced in \cite{JLY22a,JLY23}, transforms any linear ordinary and partial differential equations with non-unitary dynamics into a system under unitary dynamics via a warped phase transition that maps the equations into a higher dimension, making them suitable for quantum simulation. This technique can also be applied to these equations with inhomogeneous terms modeling source or forcing terms or boundary and interface conditions, and discrete dynamical systems such as iterative methods in numerical linear algebra, through extra equations in the system. Difficulty airses with the presense of inhomogeneous terms since it can change the stability of the original system. In this paper, we systematically study--both theoretically and numerically--the important issue of recovering the original variables from the Schr\"odingerized equations, even when the evolution operator contains unstable modes. We show that even with unstable modes, one can still construct a stable scheme, yet to recover the original variable one needs to use suitable data in the extended space. We analyze and compare both the discrete and continuous Fourier transforms used in the extended dimension, and derive corresponding error estimates, which allows one to use the more appropriate transform for specific equations. We also provide a smoother initialization for the Schrod\"odingerized system to gain higher order accuracy in the extended space. We homogenize the inhomogeneous terms with a stretch transformation, making it easier to recover the original variable. Our recovering technique also provides a simple and generic framework to solve general ill-posed problems in a computationally stable way.
We propose and analyze a novel symmetric Gautschi-type exponential wave integrator (sEWI) for the nonlinear Schr\"odinger equation (NLSE) with low regularity potential and typical power-type nonlinearity of the form $ |\psi|^{2\sigma}\psi $ with $ \psi $ being the wave function and $ \sigma > 0 $ being the exponent of the nonlinearity. The sEWI is explicit and stable under a time step size restriction independent of the mesh size. We rigorously establish error estimates of the sEWI under various regularity assumptions on potential and nonlinearity. For ``good" potential and nonlinearity ($H^2$-potential and $\sigma \geq 1$), we establish an optimal second-order error bound in the $L^2$-norm. For low regularity potential and nonlinearity ($L^\infty$-potential and $\sigma > 0$), we obtain a first-order $L^2$-norm error bound accompanied with a uniform $H^2$-norm bound of the numerical solution. Moreover, adopting a new technique of \textit{regularity compensation oscillation} (RCO) to analyze error cancellation, for some non-resonant time steps, the optimal second-order $L^2$-norm error bound is proved under a weaker assumption on the nonlinearity: $\sigma \geq 1/2$. For all the cases, we also present corresponding fractional order error bounds in the $H^1$-norm, which is the natural norm in terms of energy. Extensive numerical results are reported to confirm our error estimates and to demonstrate the superiority of the sEWI, including much weaker regularity requirements on potential and nonlinearity, and excellent long-time behavior with near-conservation of mass and energy.
The solution approximation for partial differential equations (PDEs) can be substantially improved using smooth basis functions. The recently introduced mollified basis functions are constructed through mollification, or convolution, of cell-wise defined piecewise polynomials with a smooth mollifier of certain characteristics. The properties of the mollified basis functions are governed by the order of the piecewise functions and the smoothness of the mollifier. In this work, we exploit the high-order and high-smoothness properties of the mollified basis functions for solving PDEs through the point collocation method. The basis functions are evaluated at a set of collocation points in the domain. In addition, boundary conditions are imposed at a set of boundary collocation points distributed over the domain boundaries. To ensure the stability of the resulting linear system of equations, the number of collocation points is set larger than the total number of basis functions. The resulting linear system is overdetermined and is solved using the least square technique. The presented numerical examples confirm the convergence of the proposed approximation scheme for Poisson, linear elasticity, and biharmonic problems. We study in particular the influence of the mollifier and the spatial distribution of the collocation points.
We propose a high order numerical scheme for time-dependent first order Hamilton--Jacobi--Bellman equations. In particular we propose to combine a semi-Lagrangian scheme with a Central Weighted Non-Oscillatory reconstruction. We prove a convergence result in the case of state- and time-independent Hamiltonians. Numerical simulations are presented in space dimensions one and two, also for more general state- and time-dependent Hamiltonians, demonstrating superior performance in terms of CPU time gain compared with a semi-Lagrangian scheme coupled with Weighted Non-Oscillatory reconstructions.
Sampling from probability densities is a common challenge in fields such as Uncertainty Quantification (UQ) and Generative Modelling (GM). In GM in particular, the use of reverse-time diffusion processes depending on the log-densities of Ornstein-Uhlenbeck forward processes are a popular sampling tool. In Berner et al. [2022] the authors point out that these log-densities can be obtained by solution of a \textit{Hamilton-Jacobi-Bellman} (HJB) equation known from stochastic optimal control. While this HJB equation is usually treated with indirect methods such as policy iteration and unsupervised training of black-box architectures like Neural Networks, we propose instead to solve the HJB equation by direct time integration, using compressed polynomials represented in the Tensor Train (TT) format for spatial discretization. Crucially, this method is sample-free, agnostic to normalization constants and can avoid the curse of dimensionality due to the TT compression. We provide a complete derivation of the HJB equation's action on Tensor Train polynomials and demonstrate the performance of the proposed time-step-, rank- and degree-adaptive integration method on a nonlinear sampling task in 20 dimensions.
We propose a new randomized method for solving systems of nonlinear equations, which can find sparse solutions or solutions under certain simple constraints. The scheme only takes gradients of component functions and uses Bregman projections onto the solution space of a Newton equation. In the special case of euclidean projections, the method is known as nonlinear Kaczmarz method. Furthermore, if the component functions are nonnegative, we are in the setting of optimization under the interpolation assumption and the method reduces to SGD with the recently proposed stochastic Polyak step size. For general Bregman projections, our method is a stochastic mirror descent with a novel adaptive step size. We prove that in the convex setting each iteration of our method results in a smaller Bregman distance to exact solutions as compared to the standard Polyak step. Our generalization to Bregman projections comes with the price that a convex one-dimensional optimization problem needs to be solved in each iteration. This can typically be done with globalized Newton iterations. Convergence is proved in two classical settings of nonlinearity: for convex nonnegative functions and locally for functions which fulfill the tangential cone condition. Finally, we show examples in which the proposed method outperforms similar methods with the same memory requirements.